Podrobno

The characteristics of feet center of pressure trajectory during quiet standing
ID Stodółka, Jacek (Avtor), ID Blach, Wieslaw (Avtor), ID Vodičar, Janez (Avtor), ID Maćkała, Krzysztof (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,86 MB)
MD5: 6E26E308C012284873F6EB7149CF4F06
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2076-3417/10/8/2940 Povezava se odpre v novem oknu

Izvleček
To investigate the level of bilateral symmetry or asymmetry between right and left foot center of pressure (COP) trajectory in the mediolateral and anteroposterior directions, this study involved 102 participants (54 females and 48 males). Ground reaction forces were measured using two Kistler force plates during two 45-s quiet standing trials. Comparisons of COP trajectory were performed by correlation and scatter plot analysis. Strong and very strong positive correlations (from 0.6 to 1.0) were observed between right and left foot anteroposterior COP displacement trajectory in 91 participants; 11 individuals presented weak or negative correlations. In the mediolateral direction, moderate and strong negative correlations (from −0.5 to −1.0) were observed in 69 participants, weak negative or weak positive correlations in 30 individuals, and three showed strong positive correlations (0.6 to 1.0). Additional investigation is warranted to compare COP trajectories between asymptotic individuals as assessed herein (to determine normative data) and those with foot or leg symptoms to better understand the causes of COP asymmetry and aid clinicians with the diagnosis of posture-related pathologies.

Jezik:Angleški jezik
Ključne besede:symmetry, asymmetry, foot, force, balance, postural stability, standing
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FŠ - Fakulteta za šport
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:10 str.
Številčenje:Vol. 10, iss. 8, art. 2940
PID:20.500.12556/RUL-133735 Povezava se odpre v novem oknu
UDK:796.01
ISSN pri članku:2076-3417
DOI:10.3390/app10082940 Povezava se odpre v novem oknu
COBISS.SI-ID:5682609 Povezava se odpre v novem oknu
Datum objave v RUL:13.12.2021
Število ogledov:1200
Število prenosov:201
Metapodatki:XML DC-XML DC-RDF
:
STODÓŁKA, Jacek, BLACH, Wieslaw, VODIČAR, Janez in MAĆKAŁA, Krzysztof, 2020, The characteristics of feet center of pressure trajectory during quiet standing. Applied sciences [na spletu]. 2020. Vol. 10, no. 8,  2940. [Dostopano 11 april 2025]. DOI 10.3390/app10082940. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=133735
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied sciences
Skrajšan naslov:Appl. sci.
Založnik:MDPI
ISSN:2076-3417
COBISS.SI-ID:522979353 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:23.04.2020

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:simetrija, asimetrija, stopalo, sila, ravnotežje, stabilnost, stanje

Podobna dela

Podobna dela v RUL:
  1. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  2. Part of speech tagging of slovene language using deep neural networks
  3. Automatic classification of buildings with deep learning
  4. Object detection and classification in aquatic environment using convolutional neural networks
  5. Superposition and compression of deep neutral networks
Podobna dela v drugih slovenskih zbirkah:
  1. Time series classification based on convolutional neural networks
  2. The preparation of photos' dataset and its classification using deep neural networks
  3. Prediction of geospatial raster data using convolutional neural networks
  4. Development of an advanced system for lane detection on GPU platforms
  5. Comparison of different deep neural network learning algorithms in autonomous driving

Nazaj