izpis_h1_title_alt

Datasets for cognitive load inference using wearable sensors and psychological traits
ID Gjoreski, Martin (Avtor), ID Kolenik, Tine (Avtor), ID Knez, Timotej (Avtor), ID Luštrek, Mitja (Avtor), ID Gams, Matjaž (Avtor), ID Gjoreski, Hristijan (Avtor), ID Pejović, Veljko (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (311,40 KB)
MD5: 92B2715CE10438A4F924D518BC29A88C
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2076-3417/10/11/3843 Povezava se odpre v novem oknu

Izvleček
This study introduces two datasets for multimodal research on cognitive load inference and personality traits. Different to other datasets in Affective Computing, which disregard participants’ personality traits or focus only on emotions, stress, or cognitive load from one specific task, the participants in our experiments performed seven different tasks in total. In the first dataset, 23 participants played a varying difficulty (easy, medium, and hard) game on a smartphone. In the second dataset, 23 participants performed six psychological tasks on a PC, again with varying difficulty. In both experiments, the participants filled personality trait questionnaires and marked their perceived cognitive load using NASA-TLX after each task. Additionally, the participants’ physiological response was recorded using a wrist device measuring heart rate, beat-to-beat intervals, galvanic skin response, skin temperature, and three-axis acceleration. The datasets allow multimodal study of physiological responses of individuals in relation to their personality and cognitive load. Various analyses of relationships between personality traits, subjective cognitive load (i.e., NASA-TLX), and objective cognitive load (i.e., task difficulty) are presented. Additionally, baseline machine learning models for recognizing task difficulty are presented, including a multitask learning (MTL) neural network that outperforms single-task neural network by simultaneously learning from the two datasets. The datasets are publicly available to advance the field of cognitive load inference using commercially available devices.

Jezik:Angleški jezik
Ključne besede:cognitive load, dataset, Affective Computing, machine learning, physiology, personality traits, sensor data
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:21 str.
Številčenje:Vol. 10, iss. 11, art. 3843
PID:20.500.12556/RUL-133713 Povezava se odpre v novem oknu
UDK:004.8
ISSN pri članku:2076-3417
DOI:10.3390/app10113843 Povezava se odpre v novem oknu
COBISS.SI-ID:17709571 Povezava se odpre v novem oknu
Datum objave v RUL:10.12.2021
Število ogledov:1008
Število prenosov:238
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied sciences
Skrajšan naslov:Appl. sci.
Založnik:MDPI
ISSN:2076-3417
COBISS.SI-ID:522979353 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:01.06.2020

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:U2-AG-16/0672, 0287

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:N2-0136
Naslov:Povečanje učinkovitosti uporabe virov na pametnih telefonih s pomočjo približnega računanja

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj