izpis_h1_title_alt

Algoritmično načrtovanje jedilnika
ID Ajanović, Alen (Author), ID Oblak, Polona (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,76 MB)
MD5: BFDEFBDC470EAA20092E2DF21437A1FE

Abstract
V sodobnem svetu se ljudje soočamo z veliko negotovostjo glede izbire prehrane in diete. Poleg tega obstaja tudi pomanjkanje kvalitetnih podatkovnih baz receptov, ki bi jih lahko načrtovalci uporabili za sestavljanje jedilnikov. V magistrskem delu smo se zato lotili dveh problemov. Najprej smo se soočili s težavo pomanjkljivih baz receptov, kjer smo poskusili receptom pripisati hranilne vrednosti zgolj na podlagi imen in količin sestavin. Potem smo določili tudi zasnovo ustreznega načrtovalca, kjer lahko uporabnik z vpisom želenih sestavin na prednostni seznam neposredno vpliva na vsebino jedilnika. Poleg tega ima tudi nadzor nad številom obrokov, skupnimi hranili ter zamenjavo jedi, če uporabniku posamezna sestavina v jedi ne ustreza. Na spremenjeni bazi smo implementirali štiri algoritme za načrtovanje tedenskega jedilnika. Prvi je popolnoma naključen. Drugi je verjetnostni in temelji na utežeh, ki se izračunajo glede na ustreznost hranilnih vrednosti jedi ter ujemanj sestavin receptov s prednostnim seznamom. Tretji temelji na nenegativni matrični faktorizaciji. Četrti, ki se odreže najboljše, je načrtovalec z uporabo genetskih algoritmov. Načrtovalce smo ocenili s štirimi normaliziranimi merami. Ocena hranilnih vrednosti oceni delež zadoščenih tedenskih hranil. Ocena prednostnega seznama določi delež porabljenih sestavin iz prednostnega seznama, kot ga določi uporabnik. Ocena heterogenosti oceni delež različnih parov sestavin. Ocena raznolikosti oceni delež različnih jedi v istih ali zaporednih dnevih v tednu. Pri maksimalni vrednosti 4 je skupna ocena naključnega načrtovalca 2.9, verjetnostnega 2.97, nenegativne matrične faktorizacije 2.54 ter genetskega načrtovalca 3.82.

Language:Slovenian
Keywords:genetski algoritmi, matrična faktorizacija, obdelovanje besedil, prehrana in dietetika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-133044 This link opens in a new window
COBISS.SI-ID:84599811 This link opens in a new window
Publication date in RUL:09.11.2021
Views:1651
Downloads:134
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Algorithmic meal planning
Abstract:
In the modern world, we are faced with a lot of uncertainty when trying to choose appropriate meals and diets. This, combined with a lack of good recipe databases motivated our masters thesis work. First we formulated a procedure that equips recipes with nutrition data based solely on ingredient names and their quantities. Then, we also formulated some guidelines for a good algorithmic meal planner where the user can specify ingredients they want to consume via a preference list. Besides that, the user can also change the settings for the number of meals, cumulative nutrients and even swap out a meal if they don't like it. On the changed database we have implemented four algorithms that recommend a weekly meal plan. First is completely random. Second is probabilistic and is based upon weights that are determined by nutrients and ingredients that are used from the preference list. The third one is based on non-negative matrix factorisation. The fourth and highest scored is a meal planner based on genetic algorithm. We evaluated the recommenders with four normalised scores. First is the nutrient score which determines the fraction of satisfied weekly nutrients. Second is a preference list score which determined the percentage of ingredients used from the preference list. Third is heterogeneity score which determines the fraction of different pairs of ingredients. The fourth score determines the fraction of different meals in the same or consecutive days. With a maximum of 4, the joint score of the random recommender is 2.9, probabilistic recommender 2.97, non-negative matrix factorisation 2.54 and the genetic recommender 3.82.

Keywords:genetic algorithms, matrix factorisation, text processing, food and nutrition

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back