izpis_h1_title_alt

Compiler-Level Approximate Mobile Computing
ID Fabjančič, Matevž (Author), ID Pejović, Veljko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,26 MB)
MD5: 272541657604BA512DF3A70796A81A86

Abstract
With the widespread use of smartphones, wearable devices and many applications of deep learning (DL), there is a growing interest in deploying DL on low-power devices. However, due to inferior computational resources and battery capacity limitations, this is a challenging task. One solution to this problem stems from approximate computing – by using approximations, we can sacrifice accuracy for better energy-efficiency. We develop an end-to-end system for adaptive approximate mobile computing (AMC), which enables transforming high-level definitions of convolutional neural networks into approximable DL models suitable for deployment within Android applications. We define ways of adaptively selecting among approximation levels to achieve better energy-efficiency of DL on smartphones while preserving the option of using non-approximated neural network variants. We evaluate the benefits of adaptive AMC on a concrete use case.

Language:English
Keywords:Ubiquitous Computing, Adaptive Approximations, Approximate Computing, Compilers, Android, Deep Learning
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-132867 This link opens in a new window
COBISS.SI-ID:84027395 This link opens in a new window
Publication date in RUL:05.11.2021
Views:1237
Downloads:164
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Približno računanje na ravni prevajalnika na mobilnih napravah
Abstract:
Razširjenost pametnih naprav, kot so telefoni in ure, skupaj z množično uporabo aplikacij globokega učenja kličeta po uporabi modelov globokega učenja na napravah nizke zmogljivosti. Zaradi računske zahtevnosti globokega učenja pa je to na napravah z omejenimi računskimi viri težko izvedljivo. Z vpeljavo približnega računanja v modele globokega učenja lahko za ceno natančnosti modelov prihranimo na porabljeni energiji. V tej nalogi razvijemo enoviti sistem za prilagodljivo približno računanje na mobilnih napravah. Sistem omogoča, da visoko nivojske opise nevronskih mrež pretvorimo v modele z nastavljivo približnostjo in jih uporabimo v aplikacijah za naprave z operacijskim sistemom Android. Na primeru uporabe pokažemo, da lahko z različnimi sistemi samodejnega prilagajanja približnosti modelov dosežemo boljšo energijsko učinkovitost modelov na mobilnih napravah in ohranimo možnost klasifikacije z neaproksimirano nevronsko mrežo.

Keywords:vseprisotno računanje, prilagodljivo aproksimiranje, približno računanje, prevajalniki, Android, globoko učenje

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back