izpis_h1_title_alt

Crowdsourced traffic event detection and source reputation assessment using smart contracts
ID Mihelj, Jernej (Avtor), ID Zhang, Yuan (Avtor), ID Kos, Andrej (Avtor), ID Sedlar, Urban (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,38 MB)
MD5: 68DAD177EF95B9AA602CF4D1D8973C58
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/1424-8220/19/15/3267 Povezava se odpre v novem oknu

Izvleček
Real-time data about various traffic events and conditions—offences, accidents, dangerous driving, or dangerous road conditions—is crucial for safe and efficient transportation. Unlike roadside infrastructure data which are often limited in scope and quantity, crowdsensing approaches promise much broader and comprehensive coverage of traffic events. However, to ensure safe and efficient traffic operation, assessing trustworthiness of crowdsourced data is of crucial importance; this also includes detection of intentional or unintentional manipulation, deception, and spamming. In this paper, we design and demonstrate a road traffic event detection and source reputation assessment system for unreliable data sources. Special care is taken to adapt the system for operation in decentralized mode, using smart contracts on a Turing-complete blockchain platform, eliminating single authority over such systems and increasing resilience to institutional data manipulation. The proposed solution was evaluated using both a synthetic traffic event dataset and a dataset gathered from real users, using a traffic event reporting mobile application in a professional driving simulator used for driver training. The results show the proposed system can accurately detect a range of manipulative and misreporting behaviors, and quickly converges to the final trust score even in a resource-constrained environment of a blockchain platform virtual machine.

Jezik:Angleški jezik
Ključne besede:truth discovery, road traffic, event detection, reputation assessment, blockchain, smart contract
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2019
Št. strani:17 str.
Številčenje:Vol. 19, iss. 15, art. 3267
PID:20.500.12556/RUL-132831 Povezava se odpre v novem oknu
UDK:004:351.811
ISSN pri članku:1424-8220
DOI:10.3390/s19153267 Povezava se odpre v novem oknu
COBISS.SI-ID:12587860 Povezava se odpre v novem oknu
Datum objave v RUL:04.11.2021
Število ogledov:1095
Število prenosov:172
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:01.08.2019

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:odkrivanje resnice v podatkih, cestni promet, detekcija dogodkov, ocenjevanje ugleda, veriženje podatkovnih blokov, pametne pogodbe

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0246
Naslov:ICT4QoL - Informacijsko komunikacijske tehnologije za kakovostno življenje

Financer:Drugi - Drug financer ali več financerjev
Program financ.:National Natural Science Foundation of China
Številka projekta:61572231

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj