Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Generalized manifolds, normal invariants, and L-homology
ID
Hegenbarth, Friedrich
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(495,43 KB)
MD5: 8562D8CB7BC06EFEA3CE2B19345E2E5D
URL - Source URL, Visit
https://doi.org/10.1017/S0013091521000316
Image galllery
Abstract
Let ▫$X^{n}$▫ be an oriented closed generalized ▫$n$▫-manifold, ▫$n\ge 5$▫. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597-607), we have constructed a map ▫$t:\mathcal{N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$▫ which extends the normal invariant map for the case when ▫$X^{n}$▫ is a topological ▫$n$▫-manifold. Here, ▫$\mathcal{N}(X^{n})$▫ denotes the set of all normal bordism classes of degree one normal maps ▫$(f,\,b): M^{n} \to X^{n}$▫, and ▫$H^{st}_{*} ( X^{n}; \mathbb{E})$▫ denotes the Steenrod homology of the spectrum ▫$\mathbb{E}$▫. An important non-trivial question arose whether the map ▫$t$▫ is bijective (note that this holds in the case when ▫$X^{n}$▫ is a topological ▫$n$▫-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
Language:
English
Keywords:
generalized manifold
,
Steenrod ▫$\mathbb{L}$▫-homology
,
Poincaré duality complex
,
normal invariant of degree
,
one map
,
periodic surgery spectrum ▫$\mathbb{L}$▫
,
fundamental complex
,
Spivak fibration
,
Pontryagin-Thom construction
,
Spanier-Whitehead duality
,
absolute neighbourhood retract
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication version:
Author Accepted Manuscript
Publisher:
Cambridge University Press
Year:
2021
Number of pages:
Str. 574-589
Numbering:
Vol. 64, Iss. 3
PID:
20.500.12556/RUL-132482
UDC:
515.14
ISSN on article:
0013-0915
DOI:
10.1017/S0013091521000316
COBISS.SI-ID:
67730691
Publication date in RUL:
27.10.2021
Views:
816
Downloads:
147
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Proceedings of the Edinburgh Mathematical Society
Shortened title:
Proc. Edinb. Math. Soc.
Publisher:
Scottish Academic Press
ISSN:
0013-0915
COBISS.SI-ID:
27124480
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija, geometrija in nelinearna analiza
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back