izpis_h1_title_alt

Analiza napovedljivosti opuščanja kmetijskih površin v Sloveniji
ID Kovačič, Andreja (Author), ID Zupan, Blaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,87 MB)
MD5: 9E113E9990946350453233CDF45B6AD6

Abstract
V magistrskem delu smo zbrali večletne podatke iz različnih podatkovnih virov. Zbrali smo nekatere osebne podatke o slovenskih kmetih, podatke o njihovih površinah in rabah ter glavah živali in nekaterih izplačilih, ki so jih prejeli. Podatke smo združili in kreirali profile kmetov ter agregirane profile občin, ki smo jim dodali še demografske podatke. Vizualizirali smo lastnosti površin, kmetov, občin. Z ustvarjenimi profili smo napovedovali opuščanje površin s tremi modeli, logistično regresijo, naivnim Bayesom in naključnimi gozdovi, vrednotili smo jih z merama AUC in F1. Najboljše rezultate je dala logistična regresija, vendar rezultati kažejo na potrebo po boljših podatkih. Kreirali smo tudi nomogram, ki lahko služi tako kmetom kot svetovalcem.

Language:Slovenian
Keywords:opuščanje površin, kmetijstvo, logistična regresija, naključni gozdovi, naivni Bayes, nomogram
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-132110 This link opens in a new window
COBISS.SI-ID:80940035 This link opens in a new window
Publication date in RUL:13.10.2021
Views:907
Downloads:132
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predictability analysis of farmland abandonment in Slovenia
Abstract:
In this thesis we gathered multiple years of data regarding Slovenian farmers from different sources. We obtained some personal data, data about their land and land use, animals that they keep and some forms of help they received. We merged the data and created farmer's profiles and aggregated municipalities profiles. We added some demographic attributes to the latter. We visualized information about the land, farmers and municipalities. Three different models were trained on the created profiles: logistic regression, naive Bayes and random forests. We evaluated them with AUC and F1. The best results were obtained with logistic regression but better data is needed. Lastly, we created a nomogram as an example of a tool that can be used by farmers and their advisors.

Keywords:farmland abandonment, farming, logistic regression, random forrest, naive Bayes

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back