Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
V-RBNN based small drone detection in augmented datasets for 3D LADAR system
ID
Kim, Byeong Hak
(
Avtor
),
ID
Khan, Danish
(
Avtor
),
ID
Bohak, Ciril
(
Avtor
),
ID
Choi, Wonju
(
Avtor
),
ID
Lee, Hyun Jeong
(
Avtor
),
ID
Kim, Min Young
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(5,31 MB)
MD5: 64D66D59C5B727D64B81BDBF5EB91743
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1424-8220/18/11/3825
Galerija slik
Izvleček
A common countermeasure to detect threatening drones is the electro-optical infrared (EO/IR) system. However, its performance is drastically reduced in conditions of complex background, saturation and light reflection. 3D laser sensor LiDAR is used to overcome the problems of 2D sensors like EO/IR, but it is not enough to detect small drones at a very long distance because of low laser energy and resolution. To solve this problem, A 3D LADAR sensor is under development. In this work, we study the detection methodology adequate to the LADAR sensor which can detect small drones at up to 2 km. First, a data augmentation method is proposed to generate a virtual target considering the laser beam and scanning characteristics, and to augment it with the actual LADAR sensor data for various kinds of tests before full hardware system developed. Second, a detection algorithm is proposed to detect drones using voxel-based background subtraction and variable radially bounded nearest neighbor (V-RBNN) method. The results show that 0.2 m L2 distance and 60% expected average overlap (EAO) indexes are satisfied for the required specification to detect 0.3 m size of small drones.
Jezik:
Angleški jezik
Ključne besede:
drone detection
,
clustering
,
3D sensor
,
LiDAR
,
fusion data
,
3D LADAR
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2018
Št. strani:
16 str.
Številčenje:
Vol. 18, iss. 11, art. 3825
PID:
20.500.12556/RUL-132014
UDK:
004
ISSN pri članku:
1424-8220
DOI:
10.3390/s18113825
COBISS.SI-ID:
1538015427
Datum objave v RUL:
08.10.2021
Število ogledov:
777
Število prenosov:
157
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sensors
Skrajšan naslov:
Sensors
Založnik:
MDPI
ISSN:
1424-8220
COBISS.SI-ID:
10176278
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
08.11.2018
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
detekcija dronov
,
gručenje
,
3D senzor
,
LiDAR
,
zlivanje podatkov
,
3D LADAR
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
National Research Foundation of Korea, Basic Science Research
Številka projekta:
NRF-2016R1D1A3B03930798
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Hanwha Systems
Številka projekta:
U-17-014
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Institute for Information & communications Technology Promotion
Številka projekta:
2016-0-00564
Naslov:
Development of Intelligent Interaction Technology Based on Context Awareness and Human Intention Understanding
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Ministry of Education, Korea
Številka projekta:
21A20131600011
Akronim:
BK21 Plus
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Ministry of Science, ICT and Future Planning, DGIST R&D Program
Številka projekta:
17-ST-01
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj