izpis_h1_title_alt

Moduli nad glavnimi kolobarji in njihova uporaba : delo diplomskega seminarja
ID Erzetič, Nik (Author), ID Brešar, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (387,87 KB)
MD5: A04DA5216E2E225047C7C0798C06372F

Abstract
Najprej se seznanimo z osnovnimi pojmi, kot so kolobar in modul. Pripravimo nekaj izrekov, s katerimi bomo dokazali osnovni izrek - med njimi je kitajski izrek o ostankih za kolobarje. Nato dokažemo dve obliki osnovnega izreka o končno generiranih modulih nad glavnimi kolobarji. Na koncu osnovni izrek za module uporabimo za dokaz osnovnega izreka o končno generiranih Abelovih grupah in dokaz obstoja Jordanove kanonične forme matrike.

Language:Slovenian
Keywords:modul, glavni kolobar, osnovni izrek, Jordanova kanonična forma
Work type:Final seminar paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131964 This link opens in a new window
UDC:512
COBISS.SI-ID:79890435 This link opens in a new window
Publication date in RUL:07.10.2021
Views:1026
Downloads:63
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modules over PIDs and their applications
Abstract:
First, we present the basic definition, such as that of a ring and a module. We construct a number of theorems needed in proof of the fundamental theorem, including the Chineese remained theorem for rings. Next, we prove two forms of the fundamental theorem of finitely generated modules over PID. Lastly, we employ the module fundamental theorem to prove the fundamental theorem of finitely generated Abelian groups and the existance of the Jordan normal matrix form.

Keywords:module, PID, fundamental theorem, Jordan normal form

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back