Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Estimation of carbon fluxes from eddy covariance data and satellite-derived vegetation indices in a karst grassland (Podgorski Kras, Slovenia)
ID
Noumonvi, Koffi Dodji
(
Avtor
),
ID
Ferlan, Mitja
(
Avtor
),
ID
Eler, Klemen
(
Avtor
),
ID
Alberti, Giorgio
(
Avtor
),
ID
Peressotti, Alessandro
(
Avtor
),
ID
Cerasoli, Sofia
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(11,09 MB)
MD5: 36643BB9350D3025398128A5532A44BE
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2072-4292/11/6/649
Galerija slik
Izvleček
The Eddy Covariance method (EC) is widely used for measuring carbon (C) and energy fluxes at high frequency between the atmosphere and the ecosystem, but has some methodological limitations and a spatial restriction to an area, called a footprint. Remotely sensed information is usually used in combination with eddy covariance data in order to estimate C fluxes over larger areas. In fact, spectral vegetation indices derived from available satellite data can be combined with EC measurements to estimate C fluxes outside of the tower footprint. Following this approach, the present study aimed to model C fluxes for a karst grassland in Slovenia. Three types of model were considered: (1) a linear relationship between Net Ecosystem Exchange (NEE) or Gross Primary Production (GPP) and each vegetation index; (2) a linear relationship between GPP and the product of a vegetation index with PAR (Photosynthetically Active Radiation); and (3) a simplified LUE (Light Use-Efficiency) model assuming a constant LUE. We compared the performance of several vegetation indices derived from two remote platforms (Landsat and Proba-V) as predictors of NEE and GPP, based on three accuracy metrics, the coefficient of determination (R$^2$), the Root Mean Square Error (RMSE) and the Akaike Information Criterion (AIC). Two types of aggregation of flux data were explored: midday average and daily average fluxes. The vapor pressure deficit (VPD) was used to separate the growing season into two phases, a wet and a dry phase, which were considered separately in the modelling process, in addition to the growing season as a whole. The results showed that NDVI is the best predictor of GPP and NEE during the wet phase, whereas water-related vegetation indices, namely LSWI and MNDWI, were the best predictors during the dry phase, both for midday and daily aggregates. Model 1 (linear relationship) was found to be the best in many cases. The best regression equations obtained were used to map GPP and NEE for the whole study area. Digital maps obtained can practically contribute, in a cost-effective way to the management of karst grasslands.
Jezik:
Angleški jezik
Ključne besede:
eddy covariance
,
carbon flux
,
GPP
,
NEE
,
vegetation indices
,
remote sensing
,
satellite data
,
GPP map
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
BF - Biotehniška fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2019
Št. strani:
21 str.
Številčenje:
Vol. 11, iss. 6, art. 649
PID:
20.500.12556/RUL-131932
UDK:
630*58
ISSN pri članku:
2072-4292
DOI:
10.3390/rs11060649
COBISS.SI-ID:
5360038
Datum objave v RUL:
06.10.2021
Število ogledov:
973
Število prenosov:
159
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Remote sensing
Skrajšan naslov:
Remote sens.
Založnik:
MDPI
ISSN:
2072-4292
COBISS.SI-ID:
32345133
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
16.03.2019
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
mikrometeorološke metode
,
metoda kovariance vrtincev
,
tok ogljika
,
GPP
,
NEE
,
modeliranje
,
vegetacijski indeksi
,
daljinsko zaznavanje
Projekti
Financer:
EC - European Commission
Program financ.:
H2020
Številka projekta:
774234
Naslov:
Development of Integrated Web-Based Land Decision Support System Aiming Towards the Implementation of Policies for Agriculture and Environment
Akronim:
LANDSUPPORT
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
Z4-8217
Naslov:
Identifikacija drevesnega koreninskega sistema in spremljanje zadrževanja vode v tleh z označevalnimi poizkusi
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
J4-9297
Naslov:
Skladnost in časovno ujemanje med ogljikom vezanim v lesno biomaso in "eddy covariance" oceno neto ekosistemske produkcije za presvetljen gozdnat ekosistem
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P4-0107
Naslov:
Gozdna biologija, ekologija in tehnologija
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P4-0085
Naslov:
Agroekosistemi
Financer:
EC - European Commission
Program financ.:
Erasmus Mundus, MEDFOR (Mediterranean Forestry and Natural Resources Management)
Številka projekta:
520137-1-2011-1-PT-ERA MUNDUS-EMMC
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj