izpis_h1_title_alt

k-Same-Net : k-Anonymity with generative deep neural networks for face deidentification
ID Meden, Blaž (Avtor), ID Emeršič, Žiga (Avtor), ID Štruc, Vitomir (Avtor), ID Peer, Peter (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,92 MB)
MD5: E6710497C8C730409F16BC14D0FDE9DC
URLURL - Izvorni URL, za dostop obiščite http://www.mdpi.com/1099-4300/20/1/60 Povezava se odpre v novem oknu

Izvleček
Image and video data are today being shared between government entities and other relevant stakeholders on a regular basis and require careful handling of the personal information contained therein. A popular approach to ensure privacy protection in such data is the use of deidentification techniques, which aim at concealing the identity of individuals in the imagery while still preserving certain aspects of the data after deidentification. In this work, we propose a novel approach towards face deidentification, called k-Same-Net, which combines recent Generative Neural Networks (GNNs) with the well-known k-Anonymity mechanism and provides formal guarantees regarding privacy protection on a closed set of identities. Our GNN is able to generate synthetic surrogate face images for deidentification by seamlessly combining features of identities used to train the GNN model. Furthermore, it allows us to control the image-generation process with a small set of appearance-related parameters that can be used to alter specific aspects (e.g., facial expressions, age, gender) of the synthesized surrogate images. We demonstrate the feasibility of k-Same-Net in comprehensive experiments on the XM2VTS and CK+ datasets. We evaluate the efficacy of the proposed approach through reidentification experiments with recent recognition models and compare our results with competing deidentification techniques from the literature. We also present facial expression recognition experiments to demonstrate the utility-preservation capabilities of k-Same-Net. Our experimental results suggest that k-Same-Net is a viable option for facial deidentification that exhibits several desirable characteristics when compared to existing solutions in this area.

Jezik:Angleški jezik
Ključne besede:face deidentification, generative neural networks, k-Same algorithm
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2018
Št. strani:24 str.
Številčenje:Vol. 20, iss. 1, art. 60
PID:20.500.12556/RUL-131874 Povezava se odpre v novem oknu
UDK:004.93\'1
ISSN pri članku:1099-4300
DOI:10.3390/e20010060 Povezava se odpre v novem oknu
COBISS.SI-ID:1537688771 Povezava se odpre v novem oknu
Datum objave v RUL:05.10.2021
Število ogledov:904
Število prenosov:182
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Entropy
Skrajšan naslov:Entropy
Založnik:MDPI
ISSN:1099-4300
COBISS.SI-ID:515806233 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:13.01.2018

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:deidentifikacija obrazov, generativne nevronske mreže, algoritem k-Same

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0214
Naslov:Računalniški vid

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj