izpis_h1_title_alt

Analiza učinkovitosti proizvodnje kot primer strojnega učenja: operativna odličnost in ključni kazalniki uspešnosti : operativna odličnost in ključni kazalniki uspešnosti
ID Tekavčič, Aleš (Author), ID Žiberna, Aleš (Mentor) More about this mentor... This link opens in a new window, ID Sokolić, Jure (Comentor)

.pdfPDF - Presentation file, Download (1,34 MB)
MD5: 63DC289C7C0A0ECA0CAC5ED9A704C0FE

Abstract
Z vse bolj digitalizirano družbo in tudi industrijo, na katero se bomo osredotočili v nadaljevanju diplomske naloge, je vzporedno prisotnih tudi vse več podatkov, ki se zbirajo na takšen ali drugačen način. V diplomski nalogi je zato predstavljeno področje strojnega učenja kot orodja, ki nam omogoča algoritmično obdelavo podatkov večjih razsežnosti. Podatki se v našem primeru v večji meri zbirajo na podlagi senzoričnih meritev, medtem ko se nekatere od teh meritev tudi nadaljnje obdela za namen ali vizualne ali poglobljene predstavitve delovanja različnih procesov znotraj proizvodnje. Slednje operaterjem v proizvodnji in ne nazadnje tudi vodilnim v podjetju omogoča pregled nad delom in lažje načrtovanje poslovanja. Na podlagi primerjave modelov je bilo ugotovljeno, da se je kot najbolj učinkovita metoda za napovedovanje učinkovitosti proizvodnje na podlagi preteklih podatkov za to spremenljivko izkazala metoda naključnih gozdov, medtem ko sta se preostali dve metodi izkazali podobno slabše.

Language:Slovenian
Keywords:nadzorovano strojno učenje, učinkovitost proizvodnje, izgube, vitka industrija, KPI, metode strojnega učenja, Python.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FDV - Faculty of Social Sciences
Place of publishing:Ljubljana
Publisher:[A. Tekavčič]
Year:2021
Number of pages:62 str.
PID:20.500.12556/RUL-131800 This link opens in a new window
UDC:004.85:330.526.33(043.2)
COBISS.SI-ID:90101251 This link opens in a new window
Publication date in RUL:03.10.2021
Views:1729
Downloads:153
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Manufacturing efficiency analysis as a machine learning example: operational excellence and key performance indicators. : diplomsko delo
Abstract:
With increased attendance of digitalization among society and even in industry on which we primarily focused on paper below, there is also growing amount of data, which are collected in one way or another. Therefore we have presented machine learning as a tool that helps to analyze large amount of data. In our case, data is collected through sensors, while some of measurements are further modified for the purpose of visualization and deeper presentation of different process within manufacturing. Latter enables operators and leaders, to get insights over the work and to manage company business with ease. Results derived from comparative analysis of taken models show that in case of predicting manufacturing efficiency with previous data for this variable random forest method performs best, while other two methods perform similarly bad.

Keywords:supervised machine learning, manufacturing efficiency, loss, lean manufacturing, KPI, machine learning methods, Python.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back