izpis_h1_title_alt

Implementacija nevronske mreže v vezju SoC FPGA
ID Marolt, Blaž (Author), ID Šter, Branko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,92 MB)
MD5: 4275B4CED5B32A23DA20B45ED62AD792

Abstract
V magistrskem delu smo implementirali nevronsko mrežo, sposobno uče\-nja z algoritmom vzvratnega razširjanja napake v programirljivem vezju FPGA. Delovanje nevronske mreže smo testirali na razvojni ploščici Zybo podjetja Digilent. Uporabljena razvojna ploščica vsebuje integrirano vezje Zynq-7000, ki poleg FPGA-dela vsebuje tudi procesor, ki smo ga uporabili za nadzor delovanja nevronske mreže in prenašanje podatkov učne množice. Nevronska mreža lahko izkorišča visoko stopnjo paralelnosti, saj izračuna celotno plast nevronov hkrati. Analizirali smo porabo virov in hitrost delovanja nevronske mreže ter komunikacije med FPGA in procesorskim delom. Slabost omenjenega pristopa je v relativno visoki porabi virov.

Language:Slovenian
Keywords:Nevronska mreža, FPGA, Sistem na čipu
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-131088 This link opens in a new window
COBISS.SI-ID:80889603 This link opens in a new window
Publication date in RUL:22.09.2021
Views:1330
Downloads:438
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Neural network implementation in a SoC FPGA circuit
Abstract:
In the master's thesis, we implemented a neural network capable of learning with the backpropagation algorithm in an FPGA integrated circuit. The neural network was tested on a Zybo development board from Digilent. In addition to the FPGA part, integrated circuit Zynq-7000 also contains a processor, which we used to control the neural network and to load the training data. The neural network can take advantage of a high level of parallelism, due to processing of the entire layer of neurons simultaneously. We analyzed the resource consumption and speed of the neural network operation, as well as the communications between the FPGA and the processor part. The disadvantage of this approach is a relatively high consumption of resources.

Keywords:Neural network, FPGA, System on chip

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back