izpis_h1_title_alt

Kloniranje biotin ligaze BioID2 in primerjava različnih biotin ligaz za namen iskanja interakcijskih partnerjev
ID Komatar, Gašper Anton (Author), ID Pavšič, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,39 MB)
MD5: 6598EF5CAD35CE92CBE10765C56622F1

Abstract
V razvoju je nova metoda iskanja interakcijskih partnerjev DNA, ki temelji na trikomponentnem sistemu, katerega osnova je označevanje bližnjih proteinov z biotinom. Trikomponentni sistem je sestavljen iz fuzijskega proteina z biotin ligazo, kontrolnega fuzijskega proteina in F-DNA, na kateri se nahaja fragment DNA, katerega interakcijski partnerji nas zanimajo, ki omogoča kolokalizacijo vseh omenjenih komponent. Biotin protein ligaze so sicer zelo specifični encimi, vendar jih z uvajanjem določenih mutacij preoblikujemo tako, da nespecifično označujejo proteine v njihovi bližini. Zato so zelo uporabne pri odkrivanju proteinskih interakcijskih partnerjev. Do zdaj so bile s trikomponentnim sistemom vse raziskave opravljene z biotin ligazo TurboID, a je bilo zaznati veliko nespecifične biotinilacije. Zanimalo nas je, če bi bilo z uporabo BioID2 slednje manj, kar bi izboljšalo razmerje signal/šum. Zato smo v našem eksperimentu nameravali najprej klonirati vektor z BioID2 v fuziji s proteinom Tus, ki se veže na F-DNA, izraziti rekombinantni fuzijski protein in primerjati delovanja tega encima z delovanjem encima TurboID v fuziji s Tus. Uspelo nam je pomnožiti posamezne fragmente z zapisi za omenjeni protein, jih sestaviti v vključek Tus-link72-BioID2 in ga ligirati z vektorjem pET-22b(+). Tako smo dobili vektor pET22b(+)_Tus-BioID2, ki se ga lahko uporabi za pripravo fuzijskega proteina v bakterijskem ekspresijskem sistemu. Po kloniranju smo delo nadaljevali z bioinformatsko analizo TurboID in BioID2. Najprej smo želeli dodatno razložiti mehanizem vzroka povečanja hitrosti biotinilacije TurboID in BioID2. Zato smo izvedli poravnavo modelov strukture BioID2 in TurboID z eksperimentalo določenimi strukturami biotin ligaz divjega tipa. Ugotovili smo, da se katalitična aktivnost BioID2 od divjega tipa razlikuje samo zaradi zamenjave aminokislinskega ostanka v aktivnem mestu in da samo z modeliranjem ne moremo pokazati razlik, ki bi nam pomagale bolje razumeti mehanizem delovanja TurboID. Za natančnejšo analizo bi morali določiti kristalno strukturo TurboID in jo primerjati s strukturo BirA. V zadnjem delu smo teoretično analizirali še aminokislinsko zgradbo BioID2 in TurboID ter začrtali nadaljnje korake, ki so potrebni, da bi potrdili ali ovrgli postavljeno hipotezo.

Language:Slovenian
Keywords:TurboID, BioID2, kloniranje, model strukture, interakcijski partnerji
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2021
PID:20.500.12556/RUL-130821 This link opens in a new window
COBISS.SI-ID:85632259 This link opens in a new window
Publication date in RUL:17.09.2021
Views:824
Downloads:70
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cloning of Biotin Ligase BioID2 and Comparison of Different Biotin Ligases in Search of Interaction Partners
Abstract:
There is an ongoing development of a novel approach for DNA interaction partners discovery, which is founded on a three-component system that enables enzyme-catalyzed proximity labeling of proteins. The three-component system is comprised of a fusion protein with biotin protein ligase, control fusion protein, and F-DNA that carries DNA fragment of interest and enables colocalization of all described components. Biotin protein ligases are very specific enzymes, but with some mutations applied they become very useful for nonspecific biotinylation of surrounding proteins. That is why they are so useful for protein interaction partners discovery. Up to now all research on the three-component system was made by biotin ligase TurboID. But a big rate of nonspecific biotinylation disturbed the experiment and we became interested if using BioID2 would give a better ratio signal/background. Therefore we planned our experiment so that we would start it with cloning the vector that carries a sequence of BioID2 fusion protein with Tus that binds F-DNA, to continue with expressing recombinant fusion protein to use it in a three-component system. At last, we intended to compare the results of BioID2 and TurboID biotinylation. We succeeded to multiply fragments of a fusion protein with BioID2, assemble them in insert Tus-link72-BioID2, and ligate the insert with a cloning vector to form vector pET-22b(+)_Tus-BioID2 that could be used for fusion protein preparation in bacterial expression system. Afterward, we performed a bioinformatic analysis of TurboID and BioID2. We wanted to additionally explain the mechanism causing faster biotinylation of mutated TurboID and BioID2. That is why we aligned model structures of BioID2 and TurboID with experimentally determined structures of wild-type biotin ligases. We figured out that BioID2 catalytic activity differs from wild-type biotin ligase activity only because of amino acid residue substitution. Small and uncharged glycine stabilizes reactive intermediate in a different way than arginine. We also concluded that modeling the structure of TurboID is not a sufficient way to show the differences in TurboID structure which would provide us with a better understanding of the mechanism for biotinylation acceleration. For more accurate analysis a crystal structure of TurboID should be determined and then compared with a structure of BirA. In the last part, we made a theoretical study of BioID2 and TurboID amino acid structure and defined the next phases that are necessary for our hypothesis verification or disproval.

Keywords:TurboID, BioID2, cloning, model of structure, interaction partner

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back