izpis_h1_title_alt

Automatic spiral analysis for objective assessment of motor symptoms in Parkinson's disease
ID Memedi, Mevludin (Avtor), ID Sadikov, Aleksander (Avtor), ID Groznik, Vida (Avtor), ID Žabkar, Jure (Avtor), ID Možina, Martin (Avtor), ID Bergquist, Filip (Avtor), ID Johansson, Anders (Avtor), ID Haubenberger, Dietrich (Avtor), ID Nyholm, Dag (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (708,49 KB)
MD5: 413E92B75A98CC1BEAB790EA69E6455F
URLURL - Izvorni URL, za dostop obiščite http://www.mdpi.com/1424-8220/15/9/23727 Povezava se odpre v novem oknu

Izvleček
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.

Jezik:Angleški jezik
Ključne besede:digital spiral analysis, Parkinson's disease, bradykinesia, dyskinesia, remote monitoring, machine learning, motor fluctuations, objective measures, time series analysis, visualization
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2015
Št. strani:Str. 23727-23744
Številčenje:Vol. 15, iss. 9
PID:20.500.12556/RUL-130478 Povezava se odpre v novem oknu
UDK:004:616.858
ISSN pri članku:1424-8220
DOI:10.3390/s150923727 Povezava se odpre v novem oknu
COBISS.SI-ID:1536488643 Povezava se odpre v novem oknu
Datum objave v RUL:15.09.2021
Število ogledov:845
Število prenosov:192
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sensors
Skrajšan naslov:Sensors
Založnik:MDPI
ISSN:1424-8220
COBISS.SI-ID:10176278 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:17.09.2015

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:digitalna analiza spiral, parkinsonova bolezen, bradikinezija, diskinezija, oddaljeni nadzor

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Swedish Knowledge Foundation

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Nordforce Technology AB

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Animech AB

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Dalarna University
Številka projekta:20130041
Akronim:PAULINA

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0209
Naslov:Umetna inteligenca in inteligentni sistemi

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Slovenian Ministry of Education, Science and Sport

Financer:EC - European Commission
Program financ.:European Regional Development Fund
Akronim:PARKINSCHECK

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj