izpis_h1_title_alt

Analiza vpliva izbire časovne konstante pri klasifikaciji hrupnih dogodkov z uporabo metode k-središč
ID Ivanovski, Dejan (Author), ID Prezelj, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,51 MB)
MD5: B6F6663F34F10698003744F94E8D111C

Abstract
Zaključna naloga obravnava različne metode za klasifikacijo zvočnih dogodkov hrupa v okolju. Poseben poudarek je namenjen metodi k-povprečij kot eni izmed najbolj ustreznih algoritmov za obdelavo nefonetskih ter neritmičnih zvočnih pojavov. Izvedene meritve pod nadzorovanimi pogoji služijo kot podpora analizi, v kateri smo se osredotočili na vlogo časovne konstante. Za ta namen smo ustvarili programsko kodo v kateri bo potekalo samostojno učenje računalnika na podlagi del pridobiljenihi podatkov. Cilj programa je na osnovi analize narejenih meritev ugotoviti vrednosti značilk za kateri bo izvršena klasifikacija, ter pokazati vpliv spremembe časovne konstante kot orodja za generaliziranje teh vrednosti samega rezultata klasificiranja. Merilne signale na mestu merjenja je zajemal mikrofon, z uporabo A/D pretvornika pa smo jih konvertirali v digitalno obliko, primerno za računsko analiziranje. Po ustrezni obdelavi v programskem jeziku “Python”, smo imeli možnost ugotviti, da časovna konstanta močno vpliva na nabor podatkov, ki se uporabljajo pri strojnem učenju, ter pri rezultatih kvalitete zaznavanja. Za prikaz rezultatov smo uporabljali t.i. matriko zmede ki predstavlja eno od metod za vizualiziranju uspešnosti klasifikatorja.

Language:Slovenian
Keywords:hrup, procesiranje zvočnih signalov, klasifikacija zvočnih podatkov, k-povprečja, matrika zmede
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[D. Ivanovski]
Year:2021
Number of pages:XIV, 45 str.
PID:20.500.12556/RUL-130442 This link opens in a new window
UDC:534.83:53.084.84:519.254(043.2)
COBISS.SI-ID:84052995 This link opens in a new window
Publication date in RUL:15.09.2021
Views:890
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of the influence of time constant selection in the classification of environmental noise using the k-means method
Abstract:
The final thesis deals with different methods for classifying sound events of noise in the environment. Special emphasis is placed on the method of k-averages as one of the most suitable algorithms for processing non-phonetic and non rhythmic sound phenomena. The measurements performed under controlled conditions serve to support an analysis in which we focused on the role of the time constant. For this purpose, we have created program code in which the computer will learn independently on the basis of parts of the obtained data. The aim of the program is to determine the values of the characteristics for which the classification will be performed on the basis of the analysis of measurements, and to show the impact of changing the time constant as a tool for generalizing these values of the classification result. The measuring signals at the measuring point were captured by a microphone, and using an A / D converter, they were converted into a digital form suitable for computational analysis. After proper processing in the “Python” programming language, we were able to determine that the time constant strongly influences the data set used in machine learning and the perception quality results. To display the results, we used a so called confusion matrix that represents one of the methods for visualizing classifier performance.

Keywords:noise, audio signal processing, classification of audio data, k-means, confusion matrix

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back