izpis_h1_title_alt

Stožnice in kvadriki v racionalni Bézierjevi obliki : magistrsko delo
ID Šadl Praprotnik, Ada (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,95 MB)
MD5: 3723454FA49F5F1F914456682DF66423

Abstract
Delo obravnava stožnice, podane kot racionalne Bézierjeve krivulje stopnje 2. V delu opišemo in ponazorimo algebraične in geometrijske lastnosti stožnic, podanih v taki obliki. Izpeljemo postopek za prehod iz racionalne Bézierjeve oblike stožnice v implicitno obliko in obratno. Na podlagi števila singularnosti stožnice, podane v racionalni Bézierjevi obliki, določimo njen tip. Podrobneje se posvetimo krožnemu loku oz. krožnici in pokažemo, da za predstavitev celotne krožnice potrebujemo racionalno Bézierjevo krivuljo stopnje vsaj 5. Nato se posvetimo še predstavitvi kvadrikov z racionalnimi Bézierjevimi ploskvami. Pri tem se osredotočimo predvsem na sfero. S pomočjo stereografske projekcije predstavimo oktant sfere kot racionalno trikotno Bézierjevo krpo, šestino sfere pa kot racionalno Bézierjevo ploskev iz tenzorskega produkta.

Language:Slovenian
Keywords:Bézierjeve krivulje, stožnice, baricentrične koordinate, Bézierjeve ploskve, kvadriki, stereografska projekcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-130267 This link opens in a new window
COBISS.SI-ID:76510723 This link opens in a new window
Publication date in RUL:12.09.2021
Views:1153
Downloads:131
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Conics and quadics in rational Bézier form
Abstract:
The master thesis presents conics as rational Bézier curves of degree 2. Some algebraic and geometric properties of conics, presented in such a form, are discussed. The process of changing the form of a conic, from rational Bézier form to implicit form and vice versa, is described and illustrated. We determine the type of a conic, given in a rational Bézier form, based on its number of singularities. Some special attention goes to circular arcs and circles. We show that the degree of the Bézier curve forming a full circle must be at least 5. Quadrics, presented as rational Bézier surfaces, are also discussed. Special attention goes to the sphere. With the help of the stereographic projection we present the octant of a sphere as a rational triangle Bézier patch and a sixth of a sphere as a rational tensor product Bézier surface.

Keywords:Bézier curves, conics, baricentric coordinates, Bézier surfaces, quadrics, stereographic projection

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back