izpis_h1_title_alt

Anisotropic Landau-Lifshitz model in discrete space-time
ID Krajnik, Žiga (Author), ID Ilievski, Enej (Author), ID Prosen, Tomaž (Author), ID Pasquier, Vincent (Author)

.pdfPDF - Presentation file, Download (972,66 KB)
MD5: 25B52C6D6553BE6626DA1D7FE8F62051
URLURL - Source URL, Visit https://scipost.org/10.21468/SciPostPhys.11.3.051 This link opens in a new window

Abstract
Weconstruct an integrable lattice model of classical interacting spins in discrete spacetime, representing a discrete-time analogue of the lattice Landau-Lifshitz ferromagnet with uniaxial anisotropy. As an application we use this explicit discrete symplectic integration scheme to compute the spin Drude weight and diffusion constant as functions of anisotropy and chemical potential. We demonstrate qualitatively different behavior in the easy-axis and the easy-plane regimes in the non-magnetized sector. Upon approaching the isotropic point we also find an algebraic divergence of the diffusion constant, signaling a crossover to spin superdiffusion.

Language:English
Keywords:theoretical physics, integrable models
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:34 str.
Numbering:Vol. 11, art. no. ǂ051
PID:20.500.12556/RUL-130165 This link opens in a new window
UDC:53
ISSN on article:2542-4653
DOI:10.21468/SciPostPhys.11.3.051 This link opens in a new window
COBISS.SI-ID:76027139 This link opens in a new window
Publication date in RUL:10.09.2021
Views:835
Downloads:208
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:SciPost physics
Publisher:SciPost Foundation
ISSN:2542-4653
COBISS.SI-ID:526154521 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:09.09.2021

Secondary language

Language:Slovenian
Keywords:teoretična fizika, integrabilni modeli

Projects

Funder:EC - European Commission
Funding programme:H2020
Project number:694544
Name:Open Many-body Non-Equilibrium Systems
Acronym:OMNES

Funder:ARRS - Slovenian Research Agency
Project number:P1-0402
Name:Matematična fizika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back