izpis_h1_title_alt

Osnovno o matroidih
ID DRVARIČ, MARKO (Author), ID Škrekovski, Riste (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (527,15 KB)
MD5: 84DDF2E7AF8FE6DB15C3319FB011B300

Abstract
Matroidi so struktura v kombinatoriki, ki jo je prvi predstavil Hassler Whitney leta 1935, pri kateri se pojme kot so neodvisna mnozica, cikel, baza, rang, minor, dual in druge naravno posplosi in uporablja. Matroide lahko deniramo na vec nacinov, pri tem pa izhajamo predvsem iz terminologije uporabljene v teoriji grafov in linearne algebre. Glede na to, kako matroide deniramo, jih lahko uporabimo pri razlicnih kombinatoricno-optimizacijskih problemih, kot sta problem pakiranja in pokritja ter pozresna metoda.

Language:Slovenian
Keywords:graf, vektor, linearna algebra, neodvisnost.
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-130143 This link opens in a new window
COBISS.SI-ID:76899075 This link opens in a new window
Publication date in RUL:10.09.2021
Views:1627
Downloads:77
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Matroid basics
Abstract:
Matroids are a combinatorical structure, rst introduced by Hassler Whitney in 1935, that generalizes and uses notions such as independent set, cycle, base, rank function, minor, duality and others. Matroids can be dened in dierent ways, mostly using terminology used in graph theory and linear algebra. Based on the denition used, we can use matroids in a variety of problems from the elds of combinatorics and optimization, such as the packing and covering problems, as well as the greedy method.

Keywords:graph, vector, linear algebra, independency

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back