Teoretične napovedi primarnih vsebnosti izotopov lahkih elementov ${}^{2}$H, ${}^{3}$He, ${}^{4}$He in ${}^{7}$Li so v veliki meri omejene z eksperimentalnimi negotovostmi hitrosti jedrskih reakcij, ki so se dogajale med sintezo elementov po velikem poku. Primarna vsebnost devterija določena iz astronomskih opazovanj je dosegla natančnost enega procenta in podobno natančnost bi pričakovali tudi od teoretičnih napovedi nukleosinteze po velikem poku. Namen tega dela je bil izboljšati naše poznavanje astrofizikalnega S-faktorja za jedrsko reakcijo ${}^{2}$H(p,$\gamma$)${}^{3}$He, ki pomembno vpliva na hitrost reakcije in primarno vsebnost devterija. Dano reakcijo smo študirali v energijskem območju pomembnem za nukleosintezo po velikem poku. Diferencialni reakcijski presek in kotno odvisnost žarkov $\gamma$ pri kotih $90^{\circ}$ in $135^{\circ}$ smo izmerili v nizu eksperimentov z uporabo dveh devteriranih titanovih tarč in dveh germanijevih detektorjev. Sestavo tarč smo določili s tehnikama NRA in RBS. Astrofizikalni S-faktor smo določili za težiščne energije med $E$ = 97--210 keV in ga primerjali z dostopnimi teoretičnimi izračuni. Z dano sistematsko negotovostjo (10%) nismo mogli določiti, kateri teoretični model bolje opiše nove izmerjene podatke. Tako potrebujemo bolj natančne podatke v energijskem območju velikega poka. Za preveritev problema vsebnosti litija v vesolju, smo raziskali vpliv efekta elektronskega senčenja na hitrosti jedrskih reakcij pomembnih za nukleosintezo po velikem poku. Pokazali smo, da je efekt elektronskega senčenja premajhen, da bi imel zaznaven vpliv na hitrosti jedrskih reakcij v temperaturnem območju velikega poka in s tem na primarne vsebnosti izotopov lahkih elementov. Poleg tega smo izmerili jakost resonance pri $E$ = 259 keV v reakciji ${}^{14}$N(p,$\gamma$)${}^{15}$O tako v normalni kot tudi v inverzni kinematiki. S tem smo želeli potrditi velik efekt elektronskega senčenja v inverzni reakcijski kinematiki, kot so napovedale prejšnje študije. Naši rezultati kažejo nižje jakosti resonanc v inverzni kinematiki kot v normalni kinematiki. Takega obnašanja še ne razumemo in ga bomo poskusili razložiti z naslednjo generacijo eksperimentov.
|