izpis_h1_title_alt

Detekcija poškodb stekel s polarizacijsko kamero
ID Kert, Aleš (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (20,04 MB)
MD5: EADF866D3506548588E0A5259A805DD5

Abstract
V diplomskem delu predstavimo problem detekcije poškodb na steklu. Predlagamo novo metodo, ki se namesto zanašanja na slike klasičnih kamer, zanaša na podatke o polarizaciji, pridobljenih s polarizacijsko kamero. Tekom razvoja metode je bila zajeta prva javno dostopna podatkovna zbirka, ki vsebuje polarizacijske slike poškodb na vetrobranskih steklih. Na zbirki so nato ročno označene poškodbe. Detekcijo poškodb stekla opišemo kot problem semantične segmentacije, kjer za vsak piksel določimo, če predstavlja poškodbo ali ne. Reševanja problema se lotimo z uporabo konvolucijskih nevronskih mrež. Pri izbiri vhodnih podatkov mreže eksperimentiramo z različnimi obdelavami polarizacijskih slik, z namenom odkritja optimalne obdelave. Najboljše rezultate nam nudi model, ki za vhod prejme nespremenjene polarizacijske slike, zložene v štiri kanale. Ta model dosega natančnost 0.923, priklic 0.861 in F-mero 0.885.

Language:Slovenian
Keywords:polarizacija, polarizacijska kamera, konvolucijska nevronska mreža, semantična segmentacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-129843 This link opens in a new window
COBISS.SI-ID:76733699 This link opens in a new window
Publication date in RUL:08.09.2021
Views:1222
Downloads:98
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detection of glass damage using a polarization camera
Abstract:
This thesis addresses the problem of detecting glass damage. We propose a new method that uses polarization data captured with a polarization camera, instead of relying on pictures taken with a classic camera. During the development of this method, we created the first publicly available dataset containing polarization pictures of windshield damage. The damage was annotated by hand. We pose the detection of glass damage as a semantic segmentation problem, where each pixel is classified as either healthy or damaged. We try to solve this problem using convolutional neural networks. Furthermore, we evaluate different ways of processing polarization pictures to determine the optimal processing method. The best results are offered by a model, that uses unchanged polarization images, arranged into a four channel image, which achieves a precision of 0.923, recall of 0.861 and F-score of 0.885.

Keywords:polarization, polarization camera, convolutional neural network, semantic segmentation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back