izpis_h1_title_alt

Numerične metode za integracijo hitro oscilirajočih funkcij : delo diplomskega seminarja
ID Rebolj, Aljoša (Author), ID Knez, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (668,81 KB)
MD5: B44D23ABA3DFE98CBC484D8A49344B2D

Abstract
V delu diplomskega seminarja si pogledamo numerične metode za integracijo hitro oscilirajočih funkcij specifičnega tipa. Podrobneje obravnavamo dva razreda metod, asimptotske metode in Filonove metode. V obeh primerih integrand ločimo na del, ki povzroča hitro oscilacijo, in del, ki ne oscilira oziroma oscilira počasi. Asimptotske metode so primerne predvsem pri zelo hitrih oscilacijah in se ločijo glede na lastnosti hitro oscilirajočega dela. Ideja Filonovih metod je, da pohleven del integranda aproksimiramo s polinomi, iz preostanka pa izpeljemo tako imenovane momente, ki se jih pod določenimi pogoji da eksaktno izračunati. Vse obravnavane metode implementiramo in preizkusimo na več numeričnih primerih, pri čemer primerjamo absolutno napako glede na različne hitrosti oscilacije.

Language:Slovenian
Keywords:hitro oscilirajoče funkcije, asimptotska metoda, Filonove metode
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-129790 This link opens in a new window
UDC:519.6
COBISS.SI-ID:75600899 This link opens in a new window
Publication date in RUL:08.09.2021
Views:942
Downloads:104
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Numerical methods for highly oscillatory integrals
Abstract:
In this thesis, we look at numerical methods for the integration of highly oscillatory functions of a specific type. We discuss two classes of methods in detail, asymptotic methods and Filon Methods. In both cases, we divide the integrand into a part, which causes high oscillation, and a part that does not oscillate or oscillates slowly. Asymptotic methods are particularly suitable for very high oscillations and differ according to properties of the part, which causes high oscillation. The idea of Filon methods is that we approximate the part that does not contribute to high oscillation with polynomials, and from the rest of the integrand we derive the so-called moments, which can be calculated analitically under certain conditions. We implement all the discussed methods and test them on several numerical cases, comparing the absolute error with respect to different oscillation speeds.

Keywords:highly oscillatory functions, asymptotic method, Filon methods

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back