izpis_h1_title_alt

Učni načrt za spodbujevano učenje v vizualnem sledenju
ID Hostnik, Marko (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,55 MB)
MD5: 4276E8ECF75A4044C8B68C9BC25A19EF

Abstract
V nalogi obravnavamo problem vizualnega sledenja objektom, ki ga združimo z uporabo metode s področja spodbujevanega učenja in učenja z učnim načrtom. Implementiramo sledilnik ADNet, ki iterativno izbira akcije, s katerimi sledi objektu. Sledilnik učimo z metodo gradienta strategije in predlagamo izboljšave učenja. Predvsem izboljšamo funkcijo nagrade in stabilnost učenja. Predlagan učni načrt sestavimo iz postopoma težjih umetnih sekvenc slik objektov in ozadij na podlagi dveh domen umetnih objektov. Koristnost učnega načrta na hitrost in uspeh učenja eksperimentalno potrdimo. Pristop primerjamo z uporabo učenja iz ekspertnih demonstracij in ugotovimo, da oba pristopa dosežeta primerljivo dobre rezultate. Uspešni rezultati odpirajo možnosti za nadaljnji razvoj na področju učnih načrtov in uporabe umetnih sekvenc v vizualnem sledenju.

Language:Slovenian
Keywords:vizualno sledenje, spodbujevano učenje, učni načrt, računalniški vid
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-129728 This link opens in a new window
COBISS.SI-ID:76164099 This link opens in a new window
Publication date in RUL:07.09.2021
Views:822
Downloads:182
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Learning curriculum for reinforcement learning in visual tracking
Abstract:
The thesis addresses the problem of visual object tracking in combination with reinforcement learning methods and the usage of a learning curriculum. We implement the tracker ADNet, which iteratively picks actions to pursue objects. The tracker is trained using a policy gradient method for which we propose certain improvements, especially addressing the reward function and learning stability. The proposed curriculum is constructed from synthetic sequences gradually increasing in difficulty within two domains of synthetic objects. We experimentally show the benefits of using a curriculum on the speed and success of convergence. We compare the proposed method with learning from expert demonstrations and conclude that both methods yield similar results. The promising results from our work lead to further research in the field of curriculum learning and the use of synthetic sequences in visual object tracking.

Keywords:visual object tracking, reinforcement learning, curriculum learning, computer vision

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back