izpis_h1_title_alt

Motivi in polenostavnost : magistrsko delo
ID Bizjak, Luka (Author), ID Špenko, Špela (Mentor) More about this mentor... This link opens in a new window, ID Klep, Igor (Comentor)

.pdfPDF - Presentation file, Download (940,57 KB)
MD5: 4B6E3B1CF3AAF8ABF122581C2927CA42

Abstract
V nalogi obravnavamo teorijo (čistih) motivov, ki domnevno služi kot univerzalna kohomološka teorija v algebraični geometriji. Uvodoma se spomnimo osnovnih (Weilovih) kohomoloških teorij in motiviramo vpeljavo teorije motivov. V drugem poglavju pričnemo s ponovitvijo osnovne homološke algebre, kjer vpeljemo pojme kot so aditivna, psevdo-abelova in abelova kategorija. Tretje in četrto poglavje je namenjeno teoriji Tannaka kategorij, v četrtem poglavju jo spoznamo s stališča teorije skladov. V petem poglavju preko teorije algebraičnih ciklov vpeljemo pojem (čistega) motiva in dokažemo Jannsenov izrek o polenostavnosti kategorije numeričnih (čistih) motivov.

Language:Slovenian
Keywords:algebraične varietete, sheme, kohomologija, motivi, algebraični cikli, polenostavnost
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-129595 This link opens in a new window
COBISS.SI-ID:75185667 This link opens in a new window
Publication date in RUL:05.09.2021
Views:1059
Downloads:153
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Motives and semi-simplicity
Abstract:
In this Master's thesis we are concerned with the theory of (pure) motives, which is conjectured to serve as a universal or absolute cohomology theory in algebraic geometry. We begin with a reminder of the classical (Weil) cohomology theories for smooth projective varieties and give hints as to why we should believe that a theory of motives exists. In Chapter $2$, we recall some basic homological algebra, in particular we introduce the notions of additive, pseudo-abelian and abelian categories. We then discuss the theory of Tannakian categories in Chapters $3$ and $4$, where in Chapter 4 we consider the Tannakian theory from the viewpoint of stacks. In Chapter 5 we define the category of pure motives using the theory of algebraic cycles and prove Jannsen's theorem on the semi-simplicity of the category of numerical (pure) motives.

Keywords:algebraic varieties, schemes, cohomology, motives, algebraic cycles, semi-simplicity

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back