izpis_h1_title_alt

Medmrežno merilno okolje za večagentno spodbujevalno učenje : magistrsko delo
ID Puc, Jernej (Author), ID Sadikov, Aleksander (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,38 MB)
MD5: 18347C6305455217344B4B73B7F5EC7F

Abstract
Zmožnost delovanja (in zmagovanja) v igrah se pri umetni inteligenci pogosto uporablja kot pokazatelj oz. merilo splošnejše sposobnosti. S stopnjevanjem izzivov pa so zaradi tehničnih ovir odmevni podvigi primorani sklepati kompromise - vmesniki simulacijskih okolij so lahko za umetne agente neskladno prirejeni, kar vzbuja negotovosti v primerjavah z ljudmi. Pregled izbranih del na področju globokega spodbujevalnega učenja v realnočasnih strateških igrah poudarja potrebo po novem merilnem okolju, ki z omogočanjem enakovrednejših vmesnikov bolje izpostavlja vlogo strateških elementov in je hkrati primerno za poskuse na porazdeljenih sistemih. Slednje je izvedeno kot skupinska tekmovalna igra, v opisu katere se obravnavajo določeni tehnični in teoretični problemi na primerih posnemovalnega in spodbujevalnega učenja.

Language:Slovenian
Keywords:simulacijsko okolje, večagentni sistem, večigralske igre, medmrežne igre, razvoj iger, umetna inteligenca, umetne nevronske mreže, globoko učenje, posnemovalno učenje, spodbujevalno učenje, samo-igranje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-129594 This link opens in a new window
COBISS.SI-ID:75138819 This link opens in a new window
Publication date in RUL:05.09.2021
Views:2062
Downloads:178
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Online benchmark environment for multi-agent reinforcement learning
Abstract:
Capability of acting (and winning) in games is often used in artifcial intelligence as an indicator or measure of more general ability. However, as challenges escalate, notable efforts are forced to compromise due to technical limitations - interfaces of simulated environments can be inconsistently adapted for artifcial agents, which induces uncertainty in comparisons with humans. Review of select works in the feld of deep reinforcement learning in real-time strategy games highlights necessity for a new benchmark environment, which better emphasises the role of strategic elements by enabling more equivalent interfaces and is also suitable for experiments on distributed systems. The latter is realised as a team-based competitive game, in description of which specifc technical and theoretical problems are examined on the cases of imitation and reinforcement learning.

Keywords:simulation environment, multi-agent system, multiplayer games, online games, game development, artifcial intelligence, artifcial neural networks, deep learning, imitation learning, reinforcement learning, self-play

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back