izpis_h1_title_alt

Implementacija modela za klasificiranje urbanih zvokov
ID ZUPANČIČ, METOD (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (965,47 KB)
MD5: F91F9493C0B51EE01D5B042485F7370A

Abstract
Z razvojem umetne inteligence in strojnega učenja se rešuje veliko vsakdanjih človeških problemov, na področju zvoka navadno predvsem z obravnavanjem človeškega govora. Zaradi vpliva hrupa na človeško zdravje pa je pomembna točka izboljšave kvalitete življenja tudi zaznavanje in minimizacija zvočnega hrupa. Trenutne rešitve se za detekcijo zanašajo samo na nizkonivojsko preseganje dovoljene jakosti, za nadaljnje ukrepe pa potrebujejo višjenivojske informacije o viru zvoka. Pred implementacijo je potrebno pregledati sorodna dela, ključne značilke zvoka in njim najbolj primerne topologije strojnega učenja. Za vir podatkov se bodo uporabljali prostodostopni nabor podatkov, zaželjivo tisti, na katerih je bila že opravljena podobna naloga, ki bi služila za primerjanje rezultatov. Po zadovoljivi uspešnosti izbranih značilk in topologije je potrebno preizkusiti različne načine izboljševanja rezultatov. Pri vseh naborih podatkov se za uporabo konvolucijske nevronske mreže najbolj izkažeta značilki MFCC in MEL z dodajanjem tonsko in časovno spremenjenih zvočnih posnetkov. Glede na sorodna dela, ki so uporabljala enak nabor podatkov, je rešitev te naloge (10-krat prečno preverjena povprečna klasifikacijska natančnost 98,4%) obetavna za nadaljnji razvoj.

Language:Slovenian
Keywords:klasifikacija, strojno učenje, zvok
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-129029 This link opens in a new window
COBISS.SI-ID:75122691 This link opens in a new window
Publication date in RUL:24.08.2021
Views:1476
Downloads:167
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of a machine learning model for the classification of urban sounds
Abstract:
With the development of artificial intelligence and machine learning, many everyday human problems are solved, in the field of sound usually mainly by dealing with human speech. Due to the impact of noise on human health, the detection and minimization of sound noise is also an important point for improving the quality of life. Current detection solutions rely only on low-level exceedances of the allowable volume for detection, and require further-level information on the sound source for further action. Prior to implementation, it is necessary to review related works, key sound characteristics and the most appropriate machine learning topologies. Free datasets will be used as the data source, preferably those on which a similar task has already been performed to compare the results. After satisfactory performance of the selected features and configuration of the model, it is necessary to try different ways to improve the results. For the all datasets, the MFCC and MEL features are best used for using a convolutional neural network by adding tone and time augmentations to the audio recordings. According to related works that used the same dataset, the proposed solution to this task (10-fold average classification accuracy 98.4%) is promising for further development.

Keywords:classification, machine learning, sound

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back