Elliptic functions are meromorphic double-periodic functions in a complex plane. The number of poles is equal to the number of zeros, if the elliptic function is non-constant. While the elliptic function without poles is constant. They are used to estimate integrals and solve some differential equations. We know two standard forms, named Weierstrass and Jacobi functions. All elliptical functions are expressed by these two forms. More in use are Weierstrass functions labeled ℘. The ℘ function is periodic. Every elliptic function can be expressed as a rational function of ℘ and ℘'. Using the Weierstrass product, we can write the Weierstrass sigma function. We denote it by σ. These functions are homogeneous and odd. The infinite product with which they are expressed converge absolutely and uniformly on a compact set not containing zeros. The Weierstrass zeta function is the quotient σ'/σ. This function is homogeneous of degree $ -1 $ and odd. The infinite product with which it is expressed also converge absolutely and uniformly on every compact set not containing the poles. With the help of these two functions, we can write every elliptical function.
|