Magnetic cooling is an alternative to the vapor compression cooling. It uses the magnetocaloric effect by which the temperature of a magnetocaloric material changes with an external magnetic field. Heat transfer from the material can be utilized with heat switches. We optimized a magnetic cooling device with two nanofluidic thermal switches through developing a numerical model and executing simulations. Thermal conductivity of the nanofluidic thermal switch changes while switching the electric field. We made an extensive overview of existing literature and based on our application chose the most appropriate nanofluid. We tackled the numerical problem of heat transfer linked with the magnetocaloric effect with the finite difference method and used the software system Wolfram Mathematica to execute simulations. We observed the model response based on set parameters and from the results selected the cooling device which produced the biggest temperature difference between the heat source and heat sink. We presented the device dimensions, the operating frequency domain and found causes for the optimal device operation.
|