Eden izmed najbolj pomembnih faktorjev, ki pripomore k uspehu modela strojnega učenja, je dober učni cilj. Učni cilj kritično vpliva na modelovo uspešnost in njegovo sposobnosti posploševanja. Mi se osredotočimo na učni cilj grafovskih nevronskih mrež za napovedovanje povezav, saj je le-ta še neraziskan v literaturi. V tem primeru učni cilj med drugim zajema tudi učni način, način vzorčenja negativnih povezav in številne druge hiperparametre, kot je razmerje povezav za širjenje sporočil. Pogosto so ti hiperparametri izbrani s pomočjo izčrpnega iskanja, kar je izredno časovno potratno, optimalni hiperparametri pa niso prenosljivi med različnimi modeli. Da bi odpravili te težave, predlagamo Adaptive Grid Search (AdaGrid), ki med učenjem dinamično spreminja razmerje povezav za širjenje sporočil. Je neodvisen od modela in visoko skalabilen, saj se lahko čas učenja prilagodi do potankosti. AdaGrid prav tako lahko izboljša modele kar do 2,3%, pri čemer je lahko kar devetkrat učinkovitejši od izčrpnega iskanja.
|