Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions
ID
Hamdani, Mohamed Karim
(
Author
),
ID
Chung, Nguyen Thanh
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(444,01 KB)
MD5: 00F84935745D9A528B86FA183ED50AD9
URL - Source URL, Visit
https://www.degruyter.com/document/doi/10.1515/anona-2020-0172/html
Image galllery
Abstract
In this paper, we prove the existence of multiple solutions for the following sixth-order $p(x)$-Kirchhoff-type problem $$\begin{cases} -M\left( \int\limits_{\it \Omega} \frac{1}{p(x)}|\nabla {\it\Delta} u|^{p(x)}dx\right){\it\Delta}^3_{p(x)} u = \lambda f(x)|u|^{q(x)-2}u + g(x)|u|^{r(x)-2}u + h(x) &\mbox{in}\quad {\it\Omega}, \\ u = {\it\Delta} u = {\it\Delta}^2 u = 0, \quad &\mbox{on}\quad \partial{\it\Omega}, \end{cases}$$ where ${\it\Omega} \subset \mathbb{R}^N$ is a smooth bounded domain, $N>3$, ${\it\Delta}_{p(x)}^3u\,\, : =\,\, \operatorname{div} \Big({\it\Delta}(|\nabla {\it\Delta} u|^{p(x)-2}\nabla {\it\Delta} u)\Big)$ is the $p(x)$-triharmonic operator, $p, q, r \in C(\overline{\it\Omega}), 1 < p ( x ) < \frac{N}{3}$ for all $x \in \overline{\it \Omega}, M(s) = a-bs^\gamma, \;a, b, \gamma > 0, \lambda > 0$, $g \colon {\it\Omega} \times \mathbb{R} \to \mathbb{R}$ is a nonnegative continuous function while $f, h \colon {\it\Omega} \times \mathbb{R} \to \mathbb{R}$ are sign-changing continuous functions in ${\it \Omega}$. To the best of our knowledge, this paper is one of the first contributions to the study of the sixth-order $p(x)$-Kirchhoff type problems with sign changing Kirchhoff functions.
Language:
English
Keywords:
variable exponents
,
Kirchhoff type problems
,
p(x)-triharmonic operator
,
sign-changing functions
,
concave-convex terms
,
Ekeland's variational principle
,
multiple solutions
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Year:
2021
Number of pages:
Str. 1117-1131
Numbering:
Vol. 10, iss. 1
PID:
20.500.12556/RUL-128541
UDC:
517.956
ISSN on article:
2191-9496
DOI:
10.1515/anona-2020-0172
COBISS.SI-ID:
58245891
Publication date in RUL:
19.07.2021
Views:
1729
Downloads:
214
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Advances in nonlinear analysis
Publisher:
De Gruyter
ISSN:
2191-9496
COBISS.SI-ID:
16253785
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Projects
Funder:
Other - Other funder or multiple funders
Funding programme:
Tunisia, Military Research Center for Science and Technology Laboratory
Project number:
LR19DN01
Funder:
Other - Other funder or multiple funders
Funding programme:
Vietnam, National Foundation for Science and Technology Development (NAFOSTED)
Project number:
N.101.02.2017.04
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0292
Name:
Topologija, geometrija in nelinearna analiza
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0114
Name:
Algebrajski odtisi geometrijskih značilnosti v homologiji
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0083
Name:
Forsing, fuzija in kombinatorika odprtih pokritij
Funder:
ARRS - Slovenian Research Agency
Project number:
N1-0064
Name:
Analiza zveznih in diskretnih matematičnih modelov v biologiji, kemiji in genetiki
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-8131
Name:
Zvezni in diskretni sistemi v nelinearni analizi
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back