izpis_h1_title_alt

New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions
ID Hamdani, Mohamed Karim (Author), ID Chung, Nguyen Thanh (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (444,01 KB)
MD5: 00F84935745D9A528B86FA183ED50AD9
URLURL - Source URL, Visit https://www.degruyter.com/document/doi/10.1515/anona-2020-0172/html This link opens in a new window

Abstract
In this paper, we prove the existence of multiple solutions for the following sixth-order $p(x)$-Kirchhoff-type problem $$\begin{cases} -M\left( \int\limits_{\it \Omega} \frac{1}{p(x)}|\nabla {\it\Delta} u|^{p(x)}dx\right){\it\Delta}^3_{p(x)} u = \lambda f(x)|u|^{q(x)-2}u + g(x)|u|^{r(x)-2}u + h(x) &\mbox{in}\quad {\it\Omega}, \\ u = {\it\Delta} u = {\it\Delta}^2 u = 0, \quad &\mbox{on}\quad \partial{\it\Omega}, \end{cases}$$ where ${\it\Omega} \subset \mathbb{R}^N$ is a smooth bounded domain, $N>3$, ${\it\Delta}_{p(x)}^3u\,\, : =\,\, \operatorname{div} \Big({\it\Delta}(|\nabla {\it\Delta} u|^{p(x)-2}\nabla {\it\Delta} u)\Big)$ is the $p(x)$-triharmonic operator, $p, q, r \in C(\overline{\it\Omega}), 1 < p ( x ) < \frac{N}{3}$ for all $x \in \overline{\it \Omega}, M(s) = a-bs^\gamma, \;a, b, \gamma > 0, \lambda > 0$, $g \colon {\it\Omega} \times \mathbb{R} \to \mathbb{R}$ is a nonnegative continuous function while $f, h \colon {\it\Omega} \times \mathbb{R} \to \mathbb{R}$ are sign-changing continuous functions in ${\it \Omega}$. To the best of our knowledge, this paper is one of the first contributions to the study of the sixth-order $p(x)$-Kirchhoff type problems with sign changing Kirchhoff functions.

Language:English
Keywords:variable exponents, Kirchhoff type problems, p(x)-triharmonic operator, sign-changing functions, concave-convex terms, Ekeland's variational principle, multiple solutions
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:Str. 1117-1131
Numbering:Vol. 10, iss. 1
PID:20.500.12556/RUL-128541 This link opens in a new window
UDC:517.956
ISSN on article:2191-9496
DOI:10.1515/anona-2020-0172 This link opens in a new window
COBISS.SI-ID:58245891 This link opens in a new window
Publication date in RUL:19.07.2021
Views:1729
Downloads:214
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Advances in nonlinear analysis
Publisher:De Gruyter
ISSN:2191-9496
COBISS.SI-ID:16253785 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:Other - Other funder or multiple funders
Funding programme:Tunisia, Military Research Center for Science and Technology Laboratory
Project number:LR19DN01

Funder:Other - Other funder or multiple funders
Funding programme:Vietnam, National Foundation for Science and Technology Development (NAFOSTED)
Project number:N.101.02.2017.04

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija, geometrija in nelinearna analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Funder:ARRS - Slovenian Research Agency
Project number:N1-0064
Name:Analiza zveznih in diskretnih matematičnih modelov v biologiji, kemiji in genetiki

Funder:ARRS - Slovenian Research Agency
Project number:J1-8131
Name:Zvezni in diskretni sistemi v nelinearni analizi

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back