Ocenjevanje zdravstvenega stanja gozdov postaja vse pomembnejše zaradi pogostejših in daljših sušnih obdobij. Gozdni ekosistemi postajajo bolj ranljivi in dovzetnejši za bolezni in napade žuželk, zaradi česar se povečujeta smrtnost dreves in nevarnost požarov. Z metodo LiDAR (ang. Light Detection and Ranging) lahko pridobimo trirazsežne geometrijske in spektralne podatke, ki se vse pogosteje uporabljajo pri ocenjevanju zdravstvenega stanja gozdov. Namen te študije je bil proučiti potencial bitemporalnih podatkov laserskega skeniranja z uporabo brezpilotnega zrakoplova (ang. UAV-borne laser scanning ali ULS) in atributov na podlagi vokslov za napovedovanje pojavljanja odmrlih stoječih dreves brez njihove predhodne segmentacije. Lokacijo vsakega odmrlega stoječega drevesa smo izmerili na terenu. Podatke laserskega skeniranja smo zajeli v obdobjih rasti in mirovanja. Za pridobivanje atributov na podlagi celic, višinskih slojev in stolpcev iz bitemporalnih podatkov smo uporabili drsno okno. Klasifikacijo smo izvedli z uporabo algoritma naključnih gozdov, pri čemer smo dosegli klasifikacijsko točnost 0,87 za proučevano območje P1 in klasifikacijsko točnost 0,86 za proučevano območje P2. To smo dosegli z bitemporalnimi podatki in z uporabo praga 2,5 m za razdaljo med položajem drsnega okna in najbližjo lokacijo terenske meritve. Med obema skupinama atirbutov, ki temeljita na vokslih (višinski sloji in stolpci) smo z višinskimi sloji pridobili bolj uporabne podatke iz navpičnih slojev vegetacije, kar je izboljšalo klasifikacijo živih in odmrlih dreves. Izkazalo se je, da so atributi, pridobljeni iz oblaka točk razdeljenega v stolpce, dovzetni za šum in manjkajoče vrednosti. Z uporabo drsnega okna smo dobili zadovoljive rezultate, vendar bi bile za ugotavljanje vpliva vegetacijske sestave na uspešnost klasifikacije potrebne nadaljnje analize v različnih gozdnih okoljih.
|