izpis_h1_title_alt

Podatkovno rudarjenje in segmentacija strank v elektronskem poslovanju z uporabo metode grozdenja in LRFM modela : diplomsko delo
ID Nadu, Nejc (Author), ID Škulj, Damjan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (989,03 KB)
MD5: 8CCA698D575DAEFC2F5A633D98A9E786

Abstract
V zadnjih letih smo priča hitremu razvoju informacijskih in spletnih tehnologij. Vse več se uporabljata izraza »informacijska družba« in »informacijska ekonomija«, v kateri je podatek več vreden kot sami produkti in storitve. Podjetja zbirajo ogromne količine podatkov, ki jih s pomočjo podatkovnega rudarjenja obdelujejo in iz njih pridobivajo uporabne informacije, ki jih uporabljajo za načrtovanje poslovnih in marketinških strategij. V diplomskem delu smo obravnavali področja uporabe podatkovnega rudarjenja v elektronskem poslovanju. Ugotovili smo, da elektronsko poslovanje zaradi svojih lastnosti, predvsem prisotnosti na spletu, predstavlja učinkovito domeno za uspešno podatkovno rudarjenje. Osredotočili smo se predvsem na segmentacijo strank v elektronskem poslovanju, ki predstavlja jedro strategije upravljanja odnosov s strankami CRM. Predstavili smo prednosti, ki jih prinaša podatkovno rudarjenje v procesu segmentacije, ki se nanašajo predvsem na avtomatizacijo procesa in možnost personalizacije, ter opisali najbolj uporabljene tehnike in metode podatkovnega rudarjenja za segmentacijo strank. V empiričnem delu smo izvedli prikaz segmentacije strank spletne trgovine s pomočjo metode grozdenja k-means in LRFM modela, ki velja za enega najbolj učinkovitih modelov segmentacije strank na podlagi vedenja.

Language:Slovenian
Keywords:podatkovno rudarjenje, elektronsko poslovanje, segmentacija strank, grozdenje, LRFM model
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FDV - Faculty of Social Sciences
Place of publishing:Ljubljana
Publisher:[N. Nadu]
Year:2021
Number of pages:62 str.
PID:20.500.12556/RUL-128407 This link opens in a new window
UDC:005.336.1:004(043.2)
COBISS.SI-ID:77365763 This link opens in a new window
Publication date in RUL:11.07.2021
Views:1351
Downloads:177
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Data mining and customer segmentation in e-commerce using the clustering method and LRFM model
Abstract:
Over the last few years, we have witnessed the rapid development of information and web technologies. There is an increase in the use of the terms »information society« and »information economy« where data is valued more than the products and services themselves. Companies collect huge amounts of data which they process by means of data mining, and from which they obtain helpful information used to plan business and marketing strategies. In the thesis, we discussed the areas of application of data mining in electronic commerce. We found that e-commerce, due to its features, especially online presence, represents an effective domain for successful data mining. We focused mainly on customer segmentation in e-commerce which is the core of the CRM customer relationship management strategy. We presented the advantages of data mining in the segmentation process which relate mainly to process automation and the possibility of personalization, as well as described the most frequently used techniques and methods of data mining for customer segmentation. In the empirical part, we made a presentation of online store customer segmentation using the k-means clustering method and the LRFM model, which is considered to be one of the most effective behaviour-based customer segmentation models.

Keywords:Data Mining, E-Commerce, Customer Segmentation, Clustering, LRFM model

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back