Details

Določanje pH in vsebnosti makroelementov v umetnih gnojilih
ID Artnak, Nika (Author), ID Kolar, Mitja (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,79 MB)
MD5: 841202EC1694625AF3F7D47AA0DB58E3

Abstract
Umetnim gnojilom, ki na deklaraciji nimajo zapisane vsebnosti makrohranil sem določila masni delež natrija, kalcija, magnezija in kalija, ter izmerila pH.

Language:Slovenian
Keywords:AES, AAS, tekoča gnojila, trdna gnojila, makro- in mikroelementi, K, Na, Mg, Ca
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2021
PID:20.500.12556/RUL-128356 This link opens in a new window
COBISS.SI-ID:72166403 This link opens in a new window
Publication date in RUL:09.07.2021
Views:2163
Downloads:217
Metadata:XML DC-XML DC-RDF
:
ARTNAK, Nika, 2021, Določanje pH in vsebnosti makroelementov v umetnih gnojilih [online]. Bachelor’s thesis. [Accessed 30 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=128356
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determination of pH and macroelements in fertilizers
Abstract:
For fertilizers that do not have the content of macronutrients indicated on the declaration, I determined the mass fraction of sodium, calcium, magnesium and potassium, and measured the pH.

Keywords:AES, AAS, liquid fertilizrts, solid fertilizers, micro- and macroelements, K, Na, Mg, Ca

Similar documents

Similar works from RUL:
  1. Object detection and classification in aquatic environment using convolutional neural networks
  2. Computer-vision based polyp detection in underwater images
  3. Training deep neural networks for stereo vision
  4. Image Compression Using Convolutional Neural Networks
  5. Using deep convolutional neural networks on natural language problems
Similar works from other Slovenian collections:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Food recognition from digital images using convolutional neural networks
  3. Recognition of human emotions on digital images using convolutional neural networks
  4. Person activity recognition from image sequence using convolutional neural networks
  5. Non-intrusive fall recognition using smart floor

Back