izpis_h1_title_alt

Color palette generation with Conditional Generative Adversarial Networks
ID BURYKIN, SERGEI (Author), ID Sadikov, Aleksander (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (935,97 KB)
MD5: B7ED28356C224305E539FDDFAED3FB63

Abstract
Creation of unique color palettes is a challenging task for designers all around the world. Every year it becomes increasingly difficult to create new color palettes. Color theory describes different algorithms for creation of color palettes, but these algorithms limit the possible color combinations. Designers all around the world are trying to find new ways to complete this task. We are trying to apply deep learning algorithms in order to create the color palettes which were never seen before. Using Generative Adversarial Networks (GAN) we can expand the amount of unique color palettes, since GANs are not limited by conventional algorithms.

Language:English
Keywords:Artificial Intelligence, Deep Learning, Generative Adversarial Networks
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-128188 This link opens in a new window
COBISS.SI-ID:69404675 This link opens in a new window
Publication date in RUL:05.07.2021
Views:1525
Downloads:111
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Ustvarjanje barvne palete s pogojnimi generativnimi nasprotniškimi mrežami
Abstract:
Ustvarjanje edinstvenih barvnih palet je zahtevna naloga za oblikovalce po vsem svetu. Vsako leto je vse težje ustvarjati nove barvne palete. Teorija barv opisuje različne algoritme za ustvarjanje barvnih palet, vendar ti algoritmi omejujejo možne kombinacije barv. Oblikovalci po vsem svetu poskušajo najti nove načine za dokončanje te naloge. Poskušamo uporabiti algoritme globokega učenja, da bi ustvarili barvne palete, ki jih še nikoli nismo videli. Z uporabo Generativnih Nasprotniških Mrež (GAN) lahko razširimo količino unikatnih barvnih palet, saj GAN-i niso omejeni z običajnimi algoritmi.

Keywords:Umetna Inteligenca, Poglobljeno Učenje, Generativne Nasprotniške Mreže

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back