izpis_h1_title_alt

Harmonična števila
ID Vidmar, Katarina (Author), ID Kuzman, Boštjan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/6752/ This link opens in a new window

Abstract
V magistrskem delu obravnavamo harmončna števila. Le-ta se izkažejo za zelo uporabna na področju teorije števil, analize ter verjetnosti, srečamo pa jih tudi pri analizi računalniških algoritmov in v različnih matematičnih ugankah. Pred samo obravnavo harmoničnih števil predstavimo zaokrožen izbor osnovnih izrekov in definicij o zaporedjih in vrstah, ki nam bodo v pomoč pri razumevanju jedra magistrskega dela. V tem delu definiramo harmonično vrsto in dokažemo njeno divergenco. V nadaljevanju se osredotočimo na harmonična števila in pokažemo nekaj njihovih lastnosti. V tem sklopu dokažemo Bertrandov postulat in z njegovo pomočjo pokažemo, da nobeno harmonično število Hn, n ≥ 2 ni celo število. Pokažemo tudi, da imajo vsa harmonična števila, razen H1, H2 in H6, neskončno periodo. Harmonična števila nato povežemo z naravnim logaritmom. Ob tem vpeljemo Euler-Mascheronijevo konstanto γ in prikažemo dva principa, s katerima je Euler računal njene decimalne približke. V nadaljevanju opredelimo tri različne reprezentacije harmoničnih števil, in sicer integralsko reprezentacijo, reprezentacijo z binomskimi simboli in kombinatoriˇcno interpretacijo. Izpeljemo tudi rodovno funkcijo harmoničnih števil in vpeljemo zeta funkcijo ter posplošena harmonična tevila H(nm). Dokažemo, da zeta funkcija za m > 1 konvergira in da je ζ(2) = π2 V četrtem poglavju dela z uporabo kombinatoričnih dokazov dokažemo kombinatorično interpretacijo harmoničnih števil in zaokrožen izbor kombinatoričnih identitet, ki vsebujejo harmonična števila. Kombinatorične identitete dokazujemo predvsem z metodo dvojnega štetja. V zadnjem poglavju predstavimo še nekaj zgledov uporabe harmoničnih števil, kot so problem zbiralca sličic, problem terenskega vozila, problem stotih zapornikov in problem zlaganja blokov. Dane probleme tudi simuliramo s pomočjo programskega jezika Python.

Language:Slovenian
Keywords:harmonična vrsta
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2021
PID:20.500.12556/RUL-128091 This link opens in a new window
COBISS.SI-ID: 67591939 This link opens in a new window
Publication date in RUL:17.08.2021
Views:989
Downloads:149
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
The master’s thesis discusses harmonic numbers These prove to be very useful in the field of number theory, analysis and probability theory, but they are also found in the analysis of computer algorithms and in various mathematical puzzles. Before discussing harmonic numbers, we present a complete selection of basic theorems and definitions of sequences, and series that will help us understand the core of the master’s thesis. In this part, we define a harmonic type and prove its divergence. In the following, we focus on harmonic numbers and present some of their properties. In this set, we prove Bertrand’s postulate and use it to show that no harmonic number Hn, n ≥ 2 is an integer. We also show that all harmonic numbers except H1, H2 in H6, have an infinite period. Harmonic numbers are then connected to the natural logarithm. Thereby, we introduce the Euler-Mascheroni constant γ and show two principles by which Euler calculated its decimal approximations. In the following, we define three different representations of har-monic numbers, namely integral representation, representation with binomial symbols, and combinatorial interpretation. We also derive the generic function of harmonic numbers and introduce zeta function and generalized harmonic numbers. We prove that zeta function converges for m > 1 and that ζ(2) = π2. In the fourth chapter of the thesis, by using combinatorial proofs, we prove the combinatorial interpretation of harmonic numbers and a rounded selection of combinatorial identities containing harmonic numbers. Combinatorial identities are proved mainly by the double counting method. In the last chapter, we present further examples of the use of harmonic numbers, e. g., the problem of a picture collector, the jeep problem, the problem of hundred prisoners, and the block-stacking problem. We also simulate the given problems by using Python programming language.

Keywords:harmonic series

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back