izpis_h1_title_alt

Napovedovanje porabe elektrike s pomočjo strojnega učenja in matričnega profiliranja
ID Stoklas, Nac (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,60 MB)
MD5: 9F6CFD3CC9E9B758F24EBEF51BCEAEE0

Abstract
Pomemben del v verigi dobavljanja električne energije so prodajalci, ki skrbijo za dobavo električne energije končnim uporabnikom. Točne kratkoročne napovedi porabe zmanjšajo skrbi o presežkih in primanjkljajih, ki so del njihovega vsakdana. V ta namen se uporablja širok nabor metod za analizo časovnih vrst (avtokorelacija, dekompozicija, motivi, diskordi) in njihovo napovedovanje (drevesne metode, globoko učenje, statistične metode). Pred nekaj leti se je pojavila metoda za hiter izračun matričnega profila, ki omogoča preprosto zaznavanje motivov in diskordov. Z uporabo matričnih profilov analiziramo podatkovno množico (gospodinjski odjem v Mariboru) in prepoznamo področja, na katerih je smiselno iskati relevantne značilke. V našem delu se osredotočimo predvsem na gospodinjski odjem, za katerega smo zgradili modele, ki napovedujejo porabo na uro natančno. Primerjamo različne modele in analiziramo napako glede na različne nabore značilk. Najboljši nabor značilk apliciramo tudi na ločeno podatkovno množico in primerjamo točnost med obema. Predstavimo tudi metodo, ki uporabi matrični profil za generiranje značilk. Rezultati nakazujejo, da lahko podoben nabor značilk uporabimo na različnih podatkovnih množicah porabe električne energije in pričakujemo dobre rezultate.

Language:Slovenian
Keywords:Napovedovanje porabe elektrike, strojno učenje, regresija, matrično profiliranje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-127973 This link opens in a new window
COBISS.SI-ID:69305347 This link opens in a new window
Publication date in RUL:30.06.2021
Views:1260
Downloads:116
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Energy load forecasting with machine learning and matrix profiling
Abstract:
An important part in supplying electricity to residential areas are companies selling them the electricity. Accurate daily forecasts alleviate some of the concern related to providing the right amount of electricity without any surplus or shortages. The predictions are made after using a wide array of methods to analyze time series data (autocorrelations, time series decomposition, motifs and discords, etc.) and algorithms to build forecasting models (tree based methods, deep learning, statistical methods, etc.). Recently a method was presented which efficiently calculates the matrix profile of a time series. Matrix profile enables us simple discovery of motifs and discords. We use matrix profiles to analyse our dataset (residential energy load in Maribor) and recognize the areas from which we should draw our features. We focused on residential energy consumption for which we built models, which forecast hourly energy demand. We compare different models and analyse the forecasting accuracy using different features. We apply the most successfull feature set to another data set and compare the forecasting accuracy. We also develop and present a method, that uses matrix profiles to generate features. The result indicate that we can use a similar set of features, which work well on Maribor dataset, and apply it to another residential consumption dataset and expect similarly good results.

Keywords:Energy load forecasting, machine learning, regression, matrix profiling

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back