Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Inertial focusing of neutrally buoyant particles in heterogenous suspensions
ID
Hubman, Anže
(
Author
),
ID
Plazl, Igor
(
Author
),
ID
Urbič, Tomaž
(
Author
)
PDF - Presentation file,
Download
(1,52 MB)
MD5: 1EAB5A40F1F5BF27A4890B71974DA949
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/abs/pii/S0167732221001367
Image galllery
Abstract
The modelling-based design of microfluidic devices leads to highly efficient process intensification, which provides insights into different temporal and spatial scales at which processes in various fields of application could be performed. This requires not only an understanding of the underlying mechanisms of different processes at the micro scale, but also the development of relevant computational tools. The macroscopic models are often unable to produce conclusive evidence for a given mechanism in systems with the complexity characterizing almost all chemical and biochemical processes. By contrast, mesoscale methods possess the unique ability to model relatively large physical systems, and, at the same time, effectively capture the essential features of the micro- and nanoscale structure, architecture, and relevant interactions. We demonstrate the feasibility and usefulness of this novel tool by considering a movement of neutrally buoyant particles in straight microchannels. The two-dimensional lattice Boltzmann method with immersed boundary conditions was used to study the influence of Reynolds number and particle diameter ratio on formation of particle trains. It was shown that an increase in particle diameter ratio leads to a less stable final particle configuration. An increase in Reynolds number was not found to significantly influence the train stability in the tested range.
Language:
English
Keywords:
inertial lift
,
lattice-Boltzmann method
,
immersed-boundaries
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FKKT - Faculty of Chemistry and Chemical Technology
Publication status:
Published
Publication version:
Version of Record
Year:
2021
Number of pages:
7 str.
Numbering:
Vol. 328, art. 115410
PID:
20.500.12556/RUL-127171
UDC:
544.27:66.02
ISSN on article:
0167-7322
DOI:
10.1016/j.molliq.2021.115410
COBISS.SI-ID:
48091395
Publication date in RUL:
21.05.2021
Views:
995
Downloads:
313
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Journal of molecular liquids
Shortened title:
J. mol. liq.
Publisher:
Elsevier
ISSN:
0167-7322
COBISS.SI-ID:
15382277
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
mikrofluidi
,
mrežna Boltzmannova metoda
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0191
Name:
Kemijsko inženirstvo
Funder:
ARRS - Slovenian Research Agency
Project number:
P1-0201
Name:
Fizikalna kemija
Funder:
ARRS - Slovenian Research Agency
Project number:
J7-1816
Name:
Krožna sinteza trajnostnih (bio)kemijskih procesov na osnovi obnovljivih virov
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-1708
Name:
Raziskave agregacije proteinov v vodnih raztopinah soli in drugih topnih dodatkov
Funder:
ARRS - Slovenian Research Agency
Project number:
N2-0067
Name:
Večstopenjska sinteza z MIO-encimi v kontinuirnem mikroreaktorskem sistemu
Funder:
EC - European Commission
Funding programme:
H2020
Project number:
811040
Name:
Chair Of Micro Process Engineering and TEchnology
Acronym:
COMPETE
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back