Indolamine 2,3-dioxygenase 1 is one of three enzymes that catabolize amino acid tryptophan via the kynurenine pathway. It is an inducible, cytosolic and heme-containing enzyme. Its expression is elevated in the tumor cells and tumor microenvironment. That parameter indicates a bad prognosis for the patient. Depleted concentrations of tryptophan and increased concentrations of its metabolite kynurenine, lead to many immunosuppressive actions, such as: differentiation of lymphocytes to regulatory T cells, activation of myeloid-derived suppressor cells and suppression of cytotoxic T cells and natural killer cells. Furthermore, high concentrations of kynurenine promote vascularization and invasion of tumor. Therefore, IDO 1 presents a great potential target for the development of inhibitors to fight against cancer. There is a number of potential candidates in clinical trials. Up to date, the most promising results have been obtained when an inhibitor was administered in combinations with already well-established chemotherapeutic drugs.
The aim of this thesis was to synthesize potential inhibitors of IDO1, based on structure of 3-phenylisoxazolo[5,4-d]pirimidin-4(5H)-one, obtained by virtual screening. The synthetic pathway consisted of 5 steps. The intermediates and final products were characterized by analytical methods to determine their physicochemical properties and confirm their identity. Final products were then used in biochemical assay to determine their inhibitory potency. Our main goal was to obtain IDO1 inhibitor with low IC50 value (in micromolar range or less).
All synthesized final compounds showed inhibitory activity against the enzyme IDO1. However, only one compound N-(4-nitrophenyl)-2-(4-oxo-3-(thiophen-3-yl)isoxazolo[5,4-d]pyrimidin-5(4H)-yl)acetamide (18) exhibited higher inhibition than 50 %, i.e. 67,8 %. The inhibitory potency was sufficient to further determine the IC50 value of 39,6 µM. We synthesized a micromolar IDO1 inhibitor, providing new information about structure-activity relationship for additional optimization and improvements towards more potent IDO1 inhibitors.
|