izpis_h1_title_alt

Optimizacija poravnave medicinskih slik z genetskim algoritmom
ID ŽUKOVEC, MARTIN (Avtor), ID Špiclin, Žiga (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (7,32 MB)
MD5: 2F1A9672F540543B24113D4C98D6EC22

Izvleček
Poravnava medicinskih slik predstavlja ključen korak pri računalniško podprti analizi medicinskih slik in slikovno vodenih posegih. Uporablja se za zaznavanje in kvantifikacijo normalnih in patoloških sprememb v času, kot na primer spremljanje poteka nevrodegeneracije pri preiskavah glave, spremljanje razvoja tumorjev, razgradnjo kritičnih struktur v slikah pri načrtovanju radioterapije preko poravnave topoloških atlasov, itd. S poravnavo pred- in med-operativnih slik v realnem času lahko med posegom sproti lokaliziramo anatomijo bolnika v operacijski dvorani, prenesemo pridruženi pred-operativni načrt posega in tako omogočimo minimalno invazivne kirurške posege. V posameznem kliničnem kontekstu je uporabnost postopkov poravnave medicinskih slik kritično določena z ustreznim razmerjem med točnostjo, zanesljivostjo in časovno učinkovitostjo izvajanja. Poravnavo slik izvedemo z iskanjem parametrov preslikave tako, da optimizacijski algoritem poišče optimum mere podobnosti med referenčno in premično sliko. Netoga poravnava slik je slabo pogojena, ker je prostor rešitev neskončen, hkrati pa je zaradi velikega števila prostih parametrov preslikave tudi računsko zahtevna. Računsko učinkovit optimizacijski pristop je z uporabo iterativne metode gradientnega spusta, vendar dosegljivo točnost in zanesljivost poravnave lahko omejujejo lokalni minimumi v meri podobnosti, predvsem v aplikacijah kjer je začetni približek preslikave daleč od optimuma. Slednji problem naslavljajo globalni optimizacijski postopki, katerih tipični predstavnik je genetski algoritem, vendar je zaradi velikega prostora možnih rešitev iskanje optimuma računsko zelo zahtevna naloga. Z naraščajočo zmogljivostjo grafičnih procesnih enot, tako glede računskih kot spominskih kapacitet, se tudi v domeni analize medicinskih slik odpira področje paralelnega programiranja, ki v določenih primerih obljublja visoke pohitritve v primerjavi s klasičnimi serijskimi algoritmi. Genetski algoritem omogoča učinkovito paralelno implementacijo postopka. Zato je bil cilj te naloge razvoj in vrednotenje postopka za netogo poravnavo medinskih slik, ki uporablja genetski optimizacijski algoritem in je neodvisen od tehnike zajema slik ter ga je moč izvajati na eni ali več grafičnih procesnih enotah, s prilagodljivim programskim vmesnikom za doseganje željenega razmerja med točnostjo, zanesljivostjo in časovno učinkovitostjo poravnave. Postopek je temeljil na netogi preslikavi z uporabo B-zlepkov, za mero podobnosti pa smo uporabili primerjavo normaliziranih gradientnih polj med referenčno in premično sliko. Za izločanje nesmiselnih rešitev smo v mero podobnosti vključili regularizacijska člena, kjer prvi kaznuje velike premike, drugi pa preprečuje zvijanje premične slike. Zaradi omejitev količine spomina na grafični procesni enoti, pa tudi za izkoriščanje podvojenih strojnih operacij, smo kot možno rešitev uspešno preizkusili 16-biten zapis sivinskih vrednosti slik. Zaradi velikega števila iskanih parametrov smo prilagodili postopek mutacije, s katerim smo izboljšali konvergenco ter rešili problem popolnoma naključne oziroma slepe mutacije. Razviti postopek netoge poravnave smo objektivno in kvantitativno vrednotili in primerjali z uveljavljenimi prosto dostopnimi programskimi paketi za poravnavo medicinskih slik. Vrednotenje smo opravili na zasebni bazi slik in pokazali primerljive rezultate razvitega postopka v primerjavi z uveljavljenimi postopki, pri čemer smo dosegli krajši čas izvajanja poravnave in tako povečali možnosti praktične uporabe takšnega postopka. Zaradi hitrosti poravnave je razviti postopek ugoden za časovno kritične aplikacije, na primer pri analizi in prilagajanju obsevalnih načrtov ter pri slikovno vodenih posegih. Prilagodljivost ter razširljivost na več grafičnih procesnih enot tako nudi konkurenčno alternativo obstoječim uveljavljenim rešitvam.

Jezik:Slovenski jezik
Ključne besede:Genetski algoritem, B-zlepki, netoga poravnava slik, paralelni algoritem, CUDA
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2021
PID:20.500.12556/RUL-125675 Povezava se odpre v novem oknu
Datum objave v RUL:01.04.2021
Število ogledov:1591
Število prenosov:216
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Optimization of medical image registration using genetic algorithm
Izvleček:
Image registration is a key step in computer-assisted analysis of medical images and image-guided procedures. For instance, it is used to detect and quantify normal and pathological changes over time, such as monitoring the course of neurodegeneration in head examinations, monitoring of tumor development, contouring of critical structures in images for radiotherapy planning through registration of topological atlases, etc. Furthermore, by registering pre- and inter-operative images in real time, we can localize the patient's anatomy in the operating room during the procedure, transfer the associated pre-operative plan of the procedure and thus enable minimally invasive surgical procedures. In a particular clinical context, the applicability of medical image registration method is critically determined by the appropriate balance and/or trade-offs between accuracy, reliability, and computational efficiency. Image registration is performed by searching for spatial transform parameters via a numerical optimization algorithm, which aims to find the (global) optimum of a measure of similarity between the reference and moving image. Non-rigid registration of images is poorly conditioned because the space of solutions is generally infinite, and at the same time, due to the large number of free transformation parameters, it is also computationally demanding. A widely used computationally efficient optimization approach is the iterative gradient descent, however, the achievable alignment accuracy and reliability may be limited due to local minima in the similarity measure, especially in applications where the initial transformation is far from the global optimum. The latter problem is addressed by global optimization procedures, among which a typical representative is the genetic algorithm. Due to the large space of possible solutions, finding the global optimum remains computationally very demanding. With the increasing capacity of graphic processing units, both in terms of computing and memory, the field of parallel programming is entering the domain of medical image analysis and, in certain cases, promises high acceleration compared to classical serial algorithms. The genetic algorithm in particular allows an efficient parallel implementation of the optimization process. Therefore, the aim of this thesis was to develop and evaluate a method for non-rigid alignment of medical images, which uses a genetic optimization algorithm that is independent of image acquisition technique, can be performed on one or more graphical processing units, and has a flexible software interface to achieve the desired relationship between accuracy, reliability and time efficiency of the registration. The procedure was based on non-rigid transformation using B-splines. As a measure of image similarity we compared the normalized gradient fields between the reference and the moving images. To eliminate implausible solutions, we included two regularization terms in the criterion function; first, to penalize large shifts and, second, to prevent folding of the moving image. Due to the memory limitations on the graphics processing unit, as well as to take advantage of within-cycle dual 16-bit floating point math operations capability, we successfully tested a 16-bit floating point number format of grayscale images as a possible solution. Due to the large number of spatial transformation parameters we adjusted the mutation process and thereby improved convergence and solved the problem of completely random, so called blind mutation. The developed non-rigid registration method was objectively and quantitatively evaluated and compared with the established freely available software packages for the non-rigid registration of medical images. We evaluated the methods on a private image database and showed comparable results of the developed method compared to the established methods, but achieving a shorter registration time. This features creates new accuracy-reliability-efficiency trade-off opportunities and thus increase the potential for practical application. Due to the high speed of alignment, the developed method is suitable for time-critical applications, for example in the analysis and adjustment of irradiation plans and in image-guided interventions. Flexibility and scalability to multiple graphics processing units thus offers a competitive alternative to the existing established methods.

Ključne besede:Genetic algorithm, B-splines, deformable image registration, parallel algorithm, CUDA

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj