izpis_h1_title_alt

Primerjava algoritmov nadzorovanega in nenadzorovanega učenja za klasifikacijo zvočnih dogodkov
ID Železnik, Anže (Author), ID Prezelj, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,50 MB)
MD5: 7EB86CA4480AD764ED52E94BF3C7C767

Abstract
V avtomobilski industriji je zaradi zvočnega ugodja pomembno zaznavanje zvoka stick-slip efekta, ki se pri počasnem speljevanju lahko pojavi med diskom in ploščicami zavore. Ker je subjektivno ocenjevanje neprijetnega zvoka zavor s pomočjo ocenjevalcev drago in dolgotrajno, bi bilo smiselno ocenjevalce zamenjati z algoritmom strojnega učenja. Da bi subjektivno ocenjevanje zamenjali z najboljšo metodo strojnega učenja, smo najprej preizkusili več metod nadzorovanega in nenadzorovanega učenja na velikem številu značilk, ki so bile pridobljene pri posnetkih ocenjevanja zavor. Nato smo glede na rezultate izbrali manjše število pomembnejših značilk in algoritme učili le na njihovi podlagi. Glede na rezultate smo primerjali algoritme. Za najboljša algoritma se izkažeta samoorganizirajoča mreža in algoritem k-povprečij. Rezultati, pridobljeni z uporabo štirih izbranih značilk pri šestih razredih, so se izkazali za bolj zanesljive in ponovljive kot pridobljene subjektivne ocene.

Language:Slovenian
Keywords:strojno učenje, nenadzorovano učenje, klasifikacija zvočnih posnetkov, samoorganizirajoča mreža, k-povprečja, k-najbližji sosedje, digitalno procesiranje signala
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[A. Železnik]
Year:2021
Number of pages:XXIV, 91 str.
PID:20.500.12556/RUL-125648 This link opens in a new window
UDC:004.85:004.021:534.32(043.2)
COBISS.SI-ID:61770243 This link opens in a new window
Publication date in RUL:30.03.2021
Views:1117
Downloads:150
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of algorithms for supervised and unsupervised classification of sound events
Abstract:
In the automotive industry, the perception of the stick-slip effect, which can occur between the brake disc and the brake pads during slow acceleration, is important in terms of noise pleasantness. Since the subjective quantification of unpleasant brake sound is expensive and time-consuming, it would make sense to replace the subjective evaluation with a machine learning algorithm. In order to replace subjective evaluation with a machine learning algorithm, several methods of supervised and unsupervised learning were tested on a large number of features obtained from experimental brake tests. Based on the results, a small number of important features was selected the algorithms were trained only with the selected features. The algorithms were compared based on the results. The self-organizing map and the k-means algorithm proved to be the most appropriate algorithms. The results obtained using four selected features and six classes proved to be more reliable and reproducible than the obtained subjective evaluations.

Keywords:machine learning, unsupervised learning, audio classification, self-organizing map, k-means, k-nearest neighbors, digital signal processing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back