Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Razumevati nevronščino: Kako si ljudje razlagamo jezik strojnih prevajalnikov
ID
Bordon, David
(
Author
),
ID
Vintar, Špela
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,21 MB)
MD5: A5DEDA786BD2C9919449BB6668A4540E
Image galllery
Abstract
V magistrski nalogi preverjam razumljivost nerevidiranih strojno prevedenih spletnih besedil pri končnih uporabnikih. Raziskavo sem izvedel z anketo, ki je vsebovala primere strojnih prevodov splošnih besedil, ki sem jih prevedel s prevajalnikoma Google Translate in eTranslation. Primeri vključevali napake štirih vrst, ki so bile predstavljene v kontekstu. Ta je lahko bil izključno besedilni, kombinacija besedilnega in vizualnega dveh vrst – s slikovnim gradivom, ki vpliva na razumevanje ali ne – ali vezan na pravilen izbor slike, na katero se besedilo nanaša. Vzorec 120 anketirancev je pokazal približno 59 % stopnjo razumevanja primerov, rezultati pa so bili boljši v kategorijah, kjer je bilo razumevanje vezano na slikovno gradivo oz. na izbor pravilne slike.
Language:
Slovenian
Keywords:
razumevanje strojnih prevodov
,
nevronsko strojno prevajanje (NMT)
,
nerevidirani prevodi
,
nevronščina
,
končni uporabniki
Work type:
Master's thesis/paper
Organization:
FF - Faculty of Arts
Year:
2021
PID:
20.500.12556/RUL-125328
Publication date in RUL:
11.03.2021
Views:
1863
Downloads:
321
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BORDON, David, 2021,
Razumevati nevronščino: Kako si ljudje razlagamo jezik strojnih prevajalnikov
[online]. Master’s thesis. [Accessed 23 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=125328
Copy citation
Share:
Secondary language
Language:
English
Title:
Comprehending the neural language: How people understand the language of machine translation engines
Abstract:
This thesis tackles the issue of end-user comprehensibility of unedited machine translated web texts. The research was carried out by using a questionnaire, which contained examples of general texts, translated with Google Translate and eTranslation. The examples included four different types of errors, which were presented in context. The latter was either purely textual, a combination of textual and visual of two types – with pictures that affected comprehension or did not – or linked to the correct selection of a picture the text referred to. A sample of 120 respondents showed a comprehensibility rate of roughly 59 %, while the results were better in the categories where comprehensibility was tied to the visual material or the correct selection of an image.
Keywords:
machine translation comprehensibility
,
neural machine translation (NMT)
,
unedited texts
,
neural language
,
end-users
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back