izpis_h1_title_alt

Razumevati nevronščino: Kako si ljudje razlagamo jezik strojnih prevajalnikov
ID Bordon, David (Author), ID Vintar, Špela (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,21 MB)
MD5: A5DEDA786BD2C9919449BB6668A4540E

Abstract
V magistrski nalogi preverjam razumljivost nerevidiranih strojno prevedenih spletnih besedil pri končnih uporabnikih. Raziskavo sem izvedel z anketo, ki je vsebovala primere strojnih prevodov splošnih besedil, ki sem jih prevedel s prevajalnikoma Google Translate in eTranslation. Primeri vključevali napake štirih vrst, ki so bile predstavljene v kontekstu. Ta je lahko bil izključno besedilni, kombinacija besedilnega in vizualnega dveh vrst – s slikovnim gradivom, ki vpliva na razumevanje ali ne – ali vezan na pravilen izbor slike, na katero se besedilo nanaša. Vzorec 120 anketirancev je pokazal približno 59 % stopnjo razumevanja primerov, rezultati pa so bili boljši v kategorijah, kjer je bilo razumevanje vezano na slikovno gradivo oz. na izbor pravilne slike.

Language:Slovenian
Keywords:razumevanje strojnih prevodov, nevronsko strojno prevajanje (NMT), nerevidirani prevodi, nevronščina, končni uporabniki
Work type:Master's thesis/paper
Organization:FF - Faculty of Arts
Year:2021
PID:20.500.12556/RUL-125328 This link opens in a new window
Publication date in RUL:11.03.2021
Views:1619
Downloads:287
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comprehending the neural language: How people understand the language of machine translation engines
Abstract:
This thesis tackles the issue of end-user comprehensibility of unedited machine translated web texts. The research was carried out by using a questionnaire, which contained examples of general texts, translated with Google Translate and eTranslation. The examples included four different types of errors, which were presented in context. The latter was either purely textual, a combination of textual and visual of two types – with pictures that affected comprehension or did not – or linked to the correct selection of a picture the text referred to. A sample of 120 respondents showed a comprehensibility rate of roughly 59 %, while the results were better in the categories where comprehensibility was tied to the visual material or the correct selection of an image.

Keywords:machine translation comprehensibility, neural machine translation (NMT), unedited texts, neural language, end-users

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back