izpis_h1_title_alt

Implementacija knjižnice v statističnem paketu R za ocenjevanje zanesljivosti regresijskih napovedi
ID COF, SIMON (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (445,52 KB)
MD5: A898C5F9E9CCA95C5C808589B7D5BEDC

Abstract
Za razliko od ocenjevanja kakovosti celotnih regresijskih modelov se lahko na podlagi ocen zanesljivosti regresijskih napovedi uporabnik odloči, kako obravnavati posamezne napovedi modela. Diplomsko delo opisuje izdelavo knjižnice za ocenjevanje zanesljivosti posameznih regresijskih napovedi v programskem jeziku R. Predstavljene so štiri implementirane metode: analiza občutljivosti, bagging, lokalno prečno preverjanje in ocena lokalne napake. Implementirana je tudi metoda za evalvacijo, ki uporabniku omogoča izbiro najboljše metode za specifično učno množico. Zanesljivost posamezne napovedi nam da pomembno informacijo o njeni kakovosti. V delu opisujemo arhitekturo, parametre in proces delovanja knjižnice od klica funkcije do vrnjenih rezultatov. Implementirana knjižnica nudi tudi možnost paralelnega izvajanja za hitrejši izračun ocen zanesljivosti. Ovrednotenje ocen zanesljivosti je izvedeno z izračunom korelacijskega testa z dejansko napako napovedi. Delovanje knjižnice na koncu ocenimo na podlagi pravilnosti, hitrosti in porabe pomnilnika. Opazne izboljšave smo dosegli pri časovni in prostorski zahtevnosti pri metodah LCV in CNK. Učinkovitost paralelnosti primerjamo z navadnim izvajanjem, pri čemer smo v večini primerov opazili pospešitev.

Language:Slovenian
Keywords:Ocenjevanje zanesljivosti, regresija, knjižnica, statistični paket R, napovedno modeliranje, strojno učenje, nadzorovano učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-125317 This link opens in a new window
COBISS.SI-ID:54737923 This link opens in a new window
Publication date in RUL:10.03.2021
Views:1023
Downloads:117
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of library in statistical package R for estimation of regression prediction reliability
Abstract:
In contrast to estimating accuracy of entire regression models, reliability estimates of regression predictions allow the user to decide how to handle individual predictions given by the regression model. The thesis describes the implementation of a package for estimating the reliability of individual regression predictions in the computer language R. The work describes four implemented methods: sensitivity analysis, bagging, local cross-validation and local modeling of prediction errors. A method for evaluation has also been implemented, which helps the user to choose the best reliability estimation method for their dataset. The reliability of each predicted example gives the user important information about its quality. We also present the architecture, parameters and process of execution from the functions’ call to its return values. The implemented library offers the possibility of parallel execution for faster calculation of reliability estimates. By computing the correlation with the actual prediction error the user can decide which method works best. Lastly, we evaluate the time and memory efficiency of our package and compared the efficiency of parallel and single thread execution. We accomplished noticeable improvements in the time and memory complexity of the LCV and CNK methods.

Keywords:Reliability estimate, regression, library, statistical package R, predictive modeling, machine learning, supervised learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back