izpis_h1_title_alt

Avtomatska segmentacija anizotropnih podatkov pridobljenih z elektronskim mikroskopom
ID MRVAR, GAL (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,84 MB)
MD5: 4BF6D05EC8F239AACC07F19C8BD92100

Abstract
Mitohondrij je pomemben organel evkariontskih celic. Njegova znotrajcelična segmentacija predstavlja izziv, saj se mitohondriji kvalitativno in kvantitativno razlikujejo glede na celico, v kateri se nahajajo. Klasično se mitohondrije segmentira ročno, kar je časovno neučinkovito in izpostavljeno človeški napaki ter interpretaciji. V sklopu tega diplomskega dela zato predstavljamo postopek, ki omogoča avtomatsko segmentacijo mitohondrijev nad anizotropnimi volumetričnimi podatki pridobljenimi z elektronskim mikroskopom (EM). Predlagamo postopek oz. cevovod, ki zajema operacije nad volumetričnimi podatki oz. obdelavo le teh in avtomatsko segmentacijo z uporabo konvolucijske nevronske mreže. Rezultate avtomatske segmentacije smo evalvirali nad testnima množicama, s čimer smo pridobili zelo dobre rezultate – klasifikacijska točnost je predstavljala 99 % nad obema testnima množicama.

Language:Slovenian
Keywords:konvolucijske nevronske mreže, avtomatska segmentacija, mitohondriji
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-124807 This link opens in a new window
COBISS.SI-ID:52402179 This link opens in a new window
Publication date in RUL:19.02.2021
Views:1608
Downloads:154
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic segmentation of anisotropic electron microscope data
Abstract:
Mitochondria is an important organelle of eukaryotic cells. Its intracellular segmentation presents a challenge as mitochondria differs qualitatively and quantitatively according to the cell in which they are located. The classic approach of mitochondria segmentation is manual, which is time consuming and prone to human error and interpretation. As a part of this diploma thesis, we are presenting a procedure that enables automatic segmentation of mitochondria over anisotropic volumetric data obtained with an electronic microscope (EM). We propose a procedure or a pipeline, which includes operations on volumetric data, and automatic segmentation using a convolutional neural network. We have evaluated the results of automatic segmentation using two different test sets. The evaluation showed very promising results – the classification accuracy was 99 % on both test sets.

Keywords:Convolutional neural networks, automatic segmentation, mitochondria

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back