izpis_h1_title_alt

Prilagajanje vnaprej naučenega modela BERT slovenskim klasifikacijskim nalogam
ID BOMBEK, MIHA (Avtor), ID Robnik Šikonja, Marko (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (372,81 KB)
MD5: 2D01E306601D0C6115C584D91294671A

Izvleček
Za reševanje nalog na področju obdelave besedil so trenutno najbolj uspešni modeli arhitekture transformer, kot je vnaprej naučen model BERT. Pri prilagajanju predhodno naučenega modela za specifično nalogo ponavadi prilagodimo vse parametre modela. V delu preučujemo metode prilagajanja modela BERT, ki prilagodijo le manjši del parametrov. Analiziramo rezultate pri reševanju klasifikacijskih nalog v slovenščini. Prilagajamo večjezikovna modela CroSloEngual BERT in mBERT na nalogah prepoznavanja imenskih entitet in označevanja univerzalnih besednih vrst. Uporabimo štiri različne metode prilagajanja: prilagajanje celotnega modela, prilagajanje le zadnje plasti, prilagajanje z adapterjem in prilagajanje z metodo združevanja adapterjev. Pokažemo, da prilagajanje z adapterjem, kljub majhnemu številu prilagojenih parametrov, dosega dobre rezultate in da lahko z združevanjem adapterjev dosežemo tudi boljše rezultate kot pri prilagajanju celotnega modela. Ugotovimo, da je metoda združevanja adapterjev koristnejša pri klasifikacijskih nalogah višjega nivoja. Slabost te metode je čas učenja, saj je celoten postopek združevanja adapterjev lahko dolgotrajen.

Jezik:Slovenski jezik
Ključne besede:strojno učenje, obdelava naravnega jezika, model BERT, klasifikacijska naloga, prilagajanje z združevanjem adapterjev
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2021
PID:20.500.12556/RUL-124725 Povezava se odpre v novem oknu
COBISS.SI-ID:51809539 Povezava se odpre v novem oknu
Datum objave v RUL:12.02.2021
Število ogledov:2452
Število prenosov:331
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Fine-tuning pretrained BERT model for Slovene classification tasks
Izvleček:
Transformer based models, such as pretrained BERT model, are currently the most successful approach to text processing tasks. When tuning BERT for a specific task, we usually fine-tune all the model's parameters. We investigate methods for fine-tuning BERT models, which fine-tune only a fraction of parameters for a specific task. We analyze results on Slovene classification tasks. We fine-tune multilingual models CroSloEngual BERT and mBERT on named entity recognition and UPOS tagging. We compare four fine-tuning methods: full model fine-tuning, tuning only the classification head, adapter tuning, and AdapterFusion fine-tuning. We show that adapter tuning achieves good results, despite the small number of tuned parameters, and that AdapterFusion tuning can achieve better results than full model fine-tuning. We discover that AdapterFusion tuning is more beneficial when solving higher level classification tasks. The downside of this method is that it is time consuming.

Ključne besede:machine learning, natural language processing, BERT model, classification task, AdapterFusion fine-tuning

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj