izpis_h1_title_alt

Razvoj programskega orodja za napovedovanje obnašanja mobilnega robota
ID Bolka, Gregor (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,72 MB)
MD5: B647E7545F282D1E3845CEE8EA5F6FE4

Abstract
Avtonomni mobilni roboti v sodobnem industrijskem okolju so obkroženi s številnimi premikajočimi objekti, ki jih robot lahko spremlja s pomočjo svojih zaznaval. V tej nalogi smo za namen napovedovanja trajektorij preučili metode za analizo časovnih vrst s poudarkom na uporabi umetnih nevronskih mrež. Ugotovili smo, da se enkoder/dekoder LSTM mreža lahko uspešno nauči periodičnih vzorcev gibanja robota. Z nadgradnjo te arhitekture smo uspeli napovedovati tudi kratkoročne trajektorije, kar smo v praksi realizirali v obliki ROS vozlišča za napovedovanje trajektorij.

Language:Slovenian
Keywords:mobilna robotika, časovne vrste, napovedovanje trajektorij, umetne nevronske mreže, LSTM mreže, GRU mreže, robotski sistem ROS
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[G. Bolka]
Year:2021
Number of pages:XXII, 68 str.
PID:20.500.12556/RUL-124542 This link opens in a new window
UDC:007.52:004.85:004.032.26(043.2)
COBISS.SI-ID:51334147 This link opens in a new window
Publication date in RUL:30.01.2021
Views:1776
Downloads:160
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of a software package for predicting mobile robot behaviour
Abstract:
Autonomous mobile robots in the modern industrial environment are surrounded by numerous moving objects, which the robot is able to track using its sensors. Often the future position of such objects is needed, therefore we examined the usage of time series methods for trajectory prediction with an emphasis on neural network models. We showed that encoder-decoder LSTM model can successfully learn periodic patterns in the movement of a robot. Enhanced version of this architecture was used to predict short-term trajectories, which we implemented in practice as a ROS node for trajectory prediction.

Keywords:mobile robotics, time series, trajectory prediction, artificial neural networks, LSTM networks, GRU networks, robotics middleware ROS

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back