izpis_h1_title_alt

Prepoznavanje mikro obraznih izrazov z metodami globokega učenja : magistrsko delo
ID Garafolj, Miha (Author), ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Cergol, Boris (Comentor)

.pdfPDF - Presentation file, Download (1,55 MB)
MD5: 75D00FCFE6C21017C11516ED2A998295

Abstract
Mikro obrazni izrazi so kratke in subtilne obrazne mimike, ki jih ne znamo kontrolirati z živčnim sistemom. Posledično pojavitev takšnih mimik lahko med drugim kaže na zakrivanje iskrenih čustev. Analiza mikro obraznih izrazov najde uporabno vrednost predvsem v aplikacijah znotraj javnega varstva in klinične medicine. Raziskave in razvoj sistemov za prepoznavo in klasifikacijo mikro obraznih izrazov se osredotočajo na avtomatsko, algoritemsko prepoznavo, saj so takšni izrazi težki za prepoznavo s prostim očesom in večkrat ostanejo neopaženi. V tem magistrskem delu naredim pregled nekaterih metod globokega učenja za klasifikacijo mikro obraznih izrazov v enega od osnovnih čustev (pozitivno, negativno, presenečeno, drugo) in njihovih uspešnosti na dosegljivih podatkovnih množicah, ki vsebujejo video vzorce z nespontanimi mikro obraznimi izrazi.

Language:Slovenian
Keywords:strojno učenje, globoko učenje, nevronske mreže, mikro obrazni izrazi, strojni vid
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-124444 This link opens in a new window
UDC:004.85
COBISS.SI-ID:58177027 This link opens in a new window
Publication date in RUL:22.01.2021
Views:2158
Downloads:167
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Micro-expression recognition using deep learning methods
Abstract:
Micro-expressions are short and subtle facial expressions, that we do not control with our nervous system. Among other things can occurrence of such micro-expressions indicate an attempt at hiding the real emotion. Algorithmic analysis of micro-expressions finds its value in the fields of public safety and clinical medicine. Research and development in micro-expression analysis focuses on algorithmic approaches, since it is borderline impossible for the naked eye to spot micro-expressions. In this work I do an overview of some deep learning methods for the classification of micro-expressions into one of the basic emotions (positive, negative, surprise, other) and report on their success at doing so, on various data sets.

Keywords:machine learning, deep learning, artificial neural networks, facial micro-expressions, machine vision

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back