izpis_h1_title_alt

Merjenje vpliva napak na berljivost strojnega prevoda z merilcem očesnih gibov
ID Mandl, Nina (Author), ID Vintar, Špela (Mentor) More about this mentor... This link opens in a new window, ID Repovž, Gregor (Comentor)

.pdfPDF - Presentation file, Download (1,39 MB)
MD5: 74302D9499D22E88E2845A090F2E9887

Abstract
V pričujoči magistrski nalogi se ukvarjamo z analizo strojnih prevodov, opravljenim s prevajalnikom Google za jezikovni par angleščina-slovenščina. Prevajalnik Google je zgrajen po modelu umetnih nevronskih mrež, ki po strukturi obdelave informacij posnemajo delovanje človeškega živčnega sistema. Nevronski strojni prevajalniki prekašajo predhodne vrste strojnih prevajalnikov v kakovosti in ustreznosti prevodov ne glede na vrsto in vsebino besedila. S sledilcem očesnih gibov, metodologijo, ki izhaja s področja psihologije, smo raziskovali berljivost treh stopenj strojnih prevodov. Prevode smo raziskovali z vidika vpliva na bralca, ki je ciljna točka prevajalskega procesa, posežemo pa tudi po analizi kategorij napak, ki predstavljajo največji vpliv na berljivost prevoda in so eden od pokazateljev kakovosti prevoda. S slednjim smo želeli ugotoviti, ali je možno določiti najbolj problematično skupino napak, tj. napake, ki najbolj ovirajo berljivost prevoda. Takšnim napakam je posledično treba posvetiti največ pozornosti predvsem pri procesu človeškega popravljanja strojnih prevodov ter pri strukturi strojnih prevajalnikov oziroma gradnji strojnih prevajalnikov. Namen naloge je predstaviti razlike med berljivostjo nepopravljenega strojnega prevoda, deloma popravljenega in popolnoma popravljenega strojnega prevoda ter predstaviti stopnjo problematičnosti posameznih kategorij pomenskih in slovničnih napak.

Language:Slovenian
Keywords:strojno prevajanje, nevronske mreže, evalvacija napak, berljivost, sledilec očesnih gibov
Work type:Master's thesis/paper
Organization:FF - Faculty of Arts
Year:2021
PID:20.500.12556/RUL-124443 This link opens in a new window
Publication date in RUL:22.01.2021
Views:1516
Downloads:144
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Evaluating Machine Translation Errors with the Eye-Tracking System
Abstract:
In the present master's thesis, we are dealing with the analysis of machine translation performed with Google Translate for the English-Slovenian language pair. Google Translate is built on the principle of artificial neural networks that mimic the structure and process of the human neural system. Neural machine translation systems surpass previous types of machine translation systems in the quality and suitability of translations regardless of the type and content of the text. Using an eye tracking tool, a methodology derived from the field of psychology, we investigated the readability of three stages of machine translations – raw machine translation, post-edited and completely corrected translation. We analysed translations in terms of the impact on the reader, which is the concluding point of the translation process, and we also analysed the impact of different categories of errors on the readability of the translations, which are one of the indicators of translation quality. With error evaluation we wanted to determine whether it is possible to pinpoint the most problematic group of errors, ie. errors that most hinder the readability of the translation. Said errors must be taken into account and resolved, especially in the post-editing process of machine translations and in the construction and machine learning of machine translation systems. The purpose of the paper is to present the differences between the readability of a raw machine translation, a post-edited machine translation and a completely corrected machine translation, and to present the level of impact of individual semantic and grammatical categories errors.

Keywords:machine translation, neural networks, error evaluation, readability, eye tracking

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back