izpis_h1_title_alt

Evolucijski algoritmi z večstarševskim križanjem za optimizacijo hiperparametrov modelov strojnega učenja
ID Petkovšek, Gal (Author), ID Robič, Borut (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (435,26 KB)
MD5: C796F9DE1EBAC73740CCE48AF1460843

Abstract
Večina modelov strojnega učenja ima hiperparametre, ki posredno vplivajo na natančnost napovedi. Pogosti pristopi za optimizacijo hiperparametrov so iskanje po mreži, naključno iskanje ali iskanje z evolucijskimi algoritmi. V tem diplomskem delu smo raziskali, kako uporaba večstarševskih križanj v evolucijskih algoritmih za ta problem vpliva na kvaliteto najdene rešitve. Za ta namen je bil razvit evolucijski algoritem, primeren za reševanje problema optimizacije hiperparametrov. V testih je algoritem našel boljše rešitve od iskanja po mreži in naključnega iskanja. Med večstarševskimi križanji se je najbolj izkazalo diagonalno križanje, katerega končni rezultati so bili nekoliko boljši od k-točkovnega križanja. Kljub temu v splošnem ne moremo trditi, da je za ta problem večstarševski pristop boljši od klasičnega.

Language:Slovenian
Keywords:evolucijski algoritmi, hiperparametri, večstarševsko križanje, optimizacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-124301 This link opens in a new window
COBISS.SI-ID:47524355 This link opens in a new window
Publication date in RUL:14.01.2021
Views:1090
Downloads:137
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Evolutionary algorithms with multiparent recombination for optimization of machine learning models' hyperparameters
Abstract:
Most machine learning models has hyperparameters which indirectly influences the quality of predictions. Common approaches for hyperparameter optimization are grid search, randomized search or an approach using evolutionary algorithms. In this bachelor thesis I explored how the use of multiparent recombination in evolutionary algorithms for this problem influences the quality of the found solution. For this purpose an evolutionary algorithm for hyperparameter optimization was developed. In testing the algorithm outperformed grid search and randomized search. Among the multiparent recombination algorithms the diagonal crossover performed somewhat better than the k-point crossover. However, in general we could not claim that the multiparent approach is superior to the traditional one.

Keywords:evolutionary algorithms, hyperparameters, multiparent recombination, optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back