Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Musculoskeletal images classification for detection of fractures using transfer learning
ID
Kandel, Ibrahem
(
Avtor
),
ID
Castelli, Mauro
(
Avtor
),
ID
Popovič, Aleš
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(550,23 KB)
MD5: F97E7AE6990CE43375CB7BAE50366BCF
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2313-433X/6/11/127
Galerija slik
Izvleček
The classification of the musculoskeletal images can be very challenging, mostly when it is being done in the emergency room, where a decision must be made rapidly. The computer vision domain has gained increasing attention in recent years, due to its achievements in image classification. The convolutional neural network (CNN) is one of the latest computer vision algorithms that achieved state-of-the-art results. A CNN requires an enormous number of images to be adequately trained, and these are always scarce in the medical field. Transfer learning is a technique that is being used to train the CNN by using fewer images. In this paper, we study the appropriate method to classify musculoskeletal images by transfer learning and by training from scratch. We applied six state-of-the-art architectures and compared their performance with transfer learning and with a network trained from scratch. From our results, transfer learning did increase the model performance significantly, and, additionally, it made the model less prone to overfitting.
Jezik:
Angleški jezik
Ključne besede:
transfer learning
,
computer vision
,
convolutional neural networks
,
image classification
,
musculoskeletal images
,
deep learning
,
medical images
,
neuroscience
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
Št. strani:
14 str.
Številčenje:
Vol. 6, iss. 11, art. 127
PID:
20.500.12556/RUL-124244
UDK:
659.2:004
ISSN pri članku:
2313-433X
DOI:
10.3390/jimaging6110127
COBISS.SI-ID:
39651587
Datum objave v RUL:
12.01.2021
Število ogledov:
1244
Število prenosov:
308
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of imaging
Skrajšan naslov:
J. imaging
Založnik:
MDPI
ISSN:
2313-433X
COBISS.SI-ID:
525653017
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
23.11.2020
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
informatika
,
programiranje
,
prenos znanja
,
kognitivna znanost
Projekti
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Akronim:
GADgET
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj