Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Transfer learning with convolutional neuralnetworks for diabetic retinopathy image classification : a review
ID
Kandel, Ibrahem
(
Avtor
),
ID
Castelli, Mauro
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,56 MB)
MD5: 6205891A1F8FB75F0434ED1F4391719D
Galerija slik
Izvleček
Diabetic retinopathy (DR) is a dangerous eye condition that affects diabetic patients. Without early detection, it can affect the retina and may eventually cause permanent blindness. The early diagnosis of DR is crucial for its treatment. However, the diagnosis of DR is a very difficult process that requires an experienced ophthalmologist. A breakthrough in the field of artificial intelligence called deep learning can help in giving the ophthalmologist a second opinion regarding the classification of the DR by using an autonomous classifier. To accurately train a deep learning model to classify DR, an enormous number of images is required, and this is an important limitation in the DR domain. Transfer learning is a technique that can help in overcoming the scarcity of images. The main idea that is exploited by transfer learning is that a deep learning architecture, previously trained on non-medical images, can be fine-tuned to suit the DR dataset. This paper reviews research papers that focus on DR classification by using transfer learning to present the best existing methods to address this problem. This review can help future researchers to find out existing transfer learning methods to address the DR classification task and to show their differences in terms of performance.
Jezik:
Angleški jezik
Vrsta gradiva:
Članek v reviji
Tipologija:
1.02 - Pregledni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
Št. strani:
Str. 1-24
Številčenje:
Vol. 10, iss. 6 (art. 2021)
PID:
20.500.12556/RUL-124241
UDK:
004:78
ISSN pri članku:
2076-3417
DOI:
10.3390/app10062021
COBISS.SI-ID:
38420483
Datum objave v RUL:
12.01.2021
Število ogledov:
715
Število prenosov:
265
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
12.01.2021
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Naslov:
GADgET
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0113/2019
Naslov:
AICE
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj